

Who we are?

Nasser Ezzati-Jivan

- From Brock University
- Assistant Professor
- Professor, software engineer, and team leader since 2008

Maryam Ekhlasi

- From Polytechnique Montreal University, DORSAL Lab.
- Ph.D. Candidate
- Software Performance researcher
- Software engineer since 2011

Goal

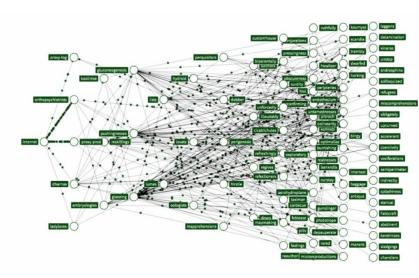
DTraComp: Distributed Trace Compare ©Maryam Ekhlasi et al. Presented at ICPE 2024

Agenda

- 1. Introduction (5 min)
- 2. Motivations (5 min)
- 3. Basic concepts (60 min)
 - Low-level Tracing, End-to-end Tracing, Debugging, Profiling, Logging, Monitoring
 - Kernel/user space
 - Process/ thread states
- 1. Detecting/Diagnosing and fixing real performance problems (60 min)
 - Introducing real performance problems
 - Introducing Differential flame graph
 - Detecting performance problems
 - Diagnosing performance problems
- 2. Hands-on exercises (30 min)
 - Installing TraceCompass
 - Collecting Traces with LTTng
- 3. Conclusion (5 min)
- 4. Questions and Answers (5 min)

Special Thanks!

- Professor Michel Dagenais
 - Full Professor at Polytechnique Montreal University
- Fatemeh Faraji Daneshgar
 - Research Associate at Polytechnique Montreal University
 - Developer of Differential Flame Graph in TraceCompas
- TraceCompass Team
- EfficiOS Team



DTraComp: Distributed Trace Compare

©Maryam Ekhlasi et al. Presented at ICPE 2024

Welcome to Microservice City!

Reference: https://www.honeycomb.io/microservices

DTraComp: Distributed Trace Compare

©Maryam Ekhlasi et al. Present

Presented at ICPE 2024

latency issue!

DTraComp: Distributed Trace Compare

©Maryam Ekhlasi et al.

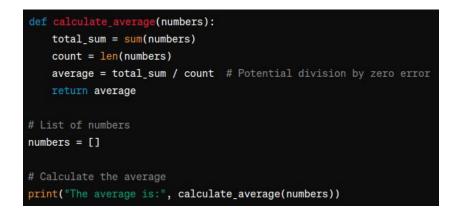
Presented at ICPE 2024

Basic Concepts!

Question: Have you ever wondered how developers track the behavior of distributed applications in real-time, especially in complex systems?

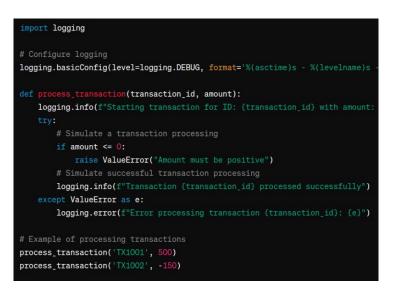
Question: What technique allows software developers to analyze and monitor the detailed operations of a system, including interactions with the operating system, to enhance performance and diagnose issues?!

Presented at ICPE 2024


Levels of observability

- Debugging
- Logging
- Profiling
- Tracing
 - Low-level Tracing
 - High-level Tracing
- Monitoring

Debugging


- The process of finding errors in source code!
- Performed in the development environment.

Logging

- Recording information during the execution time.
- Levels of logging
 - DEBUG
 - INFO
 - WARNING
 - ERROR
 - FATAL

DTraComp: Distributed Trace Compare

©Maryam Ekhlasi et al.

Presented at ICPE 2024

Profiling

- Statistical summary of observed events.
- Where is performance lost?
- Won't report the reason!

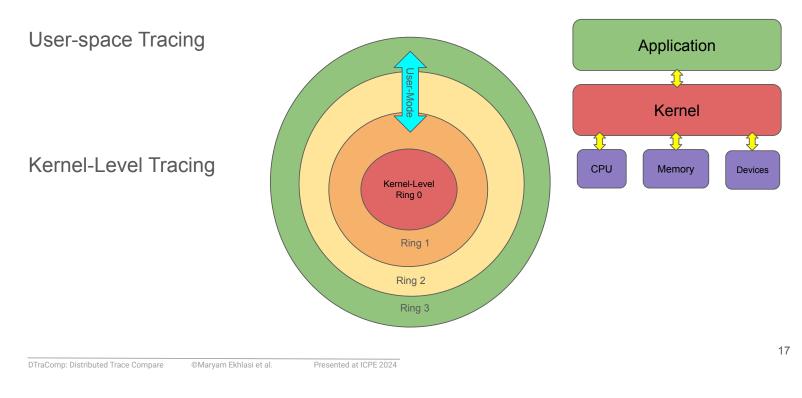
```
mport cProfile
mport random
mport time
  time.sleep(1) # Simulates processing time
  return sum(random.sample(range(10000), 1000))
  time.sleep(2) # Simulates more processing time
  return sum(random.sample(range(10000), 5000))
  time.sleep(3) # Simulates even more processing time
  data = [random.randint(1, 100) for _ in range(10000)]
  return sum(data)
  fast_result = process_data_fast()
  medium_result = process_data_medium()
  slow_result = process_data_slow()
f __name__ == "__main__":
  profiler = cProfile.Profile()
  profiler.enable()
  main()
  profiler.disable()
  profiler.print_stats(sort='time')
```

Low-level Tracing!

- Printf!
- Every location in the code that we want to trace is referred to as a tracepoint. The process of inserting tracepoints into the code is known as instrumentation and each time a tracepoint is executed, it is generated an event.
- Instrumentation
 - Static instrumentation
 - Dynamic instrumentation

DTraComp: Distributed Trace Compare

©Maryam Ekhlasi et al.


Presented at ICPE 2024

Low-level Tracing!

<pre>#include <stdio.h></stdio.h></pre>	
#define MAX 5	
<pre>int calculate_sum(int* array) { int total = 0;</pre>	
<pre>printf("Starting calculation"); for (int i = 0; i < MAX; i++) { total += array[i]; printf("Adding index %d, total now %d }</pre>	// < tracepoint d", i, total); // < tracepoint
<pre>printf("Final total: %d", total);</pre>	// < tracepoint
return total;	
)	
int main() {	
<pre>int numbers[MAX] = {1, 2, 3, 4, 5}; calculate_sum(numbers);</pre>	
return 0;	

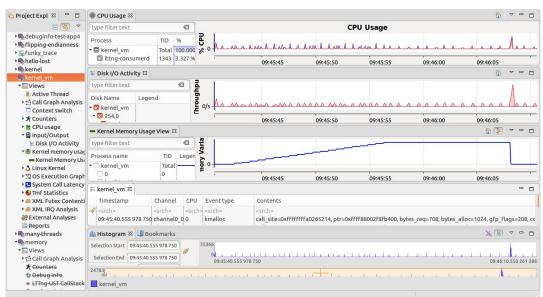
Starting calculation	// < event
Adding index 0, total now 1	// < event
Adding index 1, total now 3	// < event
Adding index 2, total now 6	// < event
Adding index 3, total now 10	// < event
Adding index 4, total now 15	// < event
Final total: 15	// < event

Two Levels of low-level tracing

Tracing VS Logging

- Tracers are designed to record much lower-level events that occur much more frequently than log messages.
- Logging is more appropriate for a very high-level analysis of less frequent events: user accesses, exceptional conditions (errors and warnings, for example), database transactions, instant messaging communications, and such. Simply put, logging is one of the many use cases that can be satisfied with tracing.

Competing software tracers (low-level tracers)


- LTTng
- Dtrace4linux
- eBPF
- Ftrace
- Perf
- Strace
- Sysdig
- SystemTap

DTraComp: Distributed Trace Compare ©

©Maryam Ekhlasi et al. Presented at ICPE 2024

Low-level Trace Visualization Tool

Visualization Approaches

Flame Graph

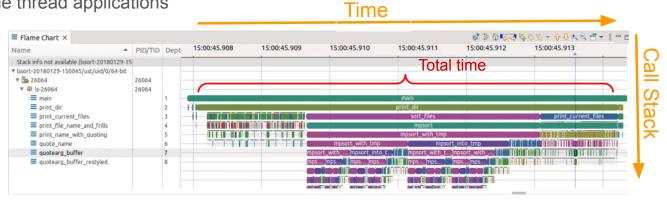
- The horizontal axis of the call stack collection represents the function names
- Alphabetical arrangement of function names from left to right
- Combining identical functions placed side by side horizontally
- The width of each box shows the appearance frequency of that functions
- Random colors

hat functions

Flame Graph

leaf

```
DTraComp: Distributed Trace Compare
```

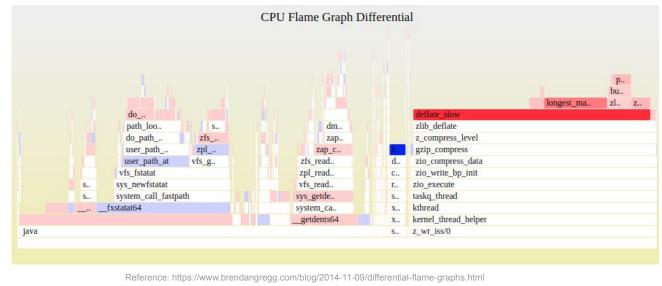

©Maryam Ekhlasi et al. Presented at ICPE 2024

Visualization Approaches

Flame Chart

- Time on the horizontal axis
- Call stack on the vertical axis
- Single thread applications

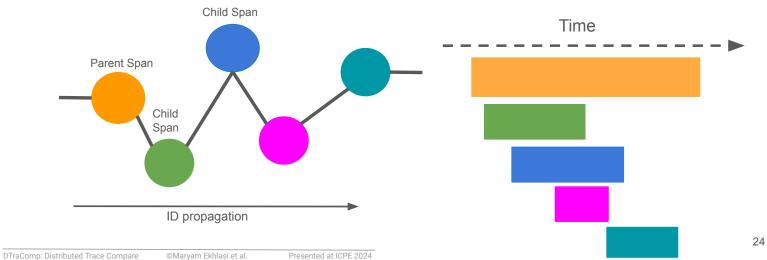
The self time of a function is indicated by the difference in width between its frame and the frames directly beneath it

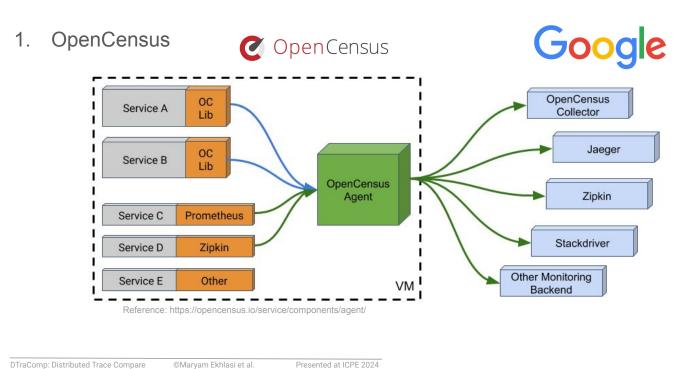


Reference: https://archive.eclipse.org/tracecompass/doc/stable/org.eclipse.tracecompass.doc.user/LTTng-UST-Analyses.html

Reference:https://github.com/brendangregg/FlameGraph

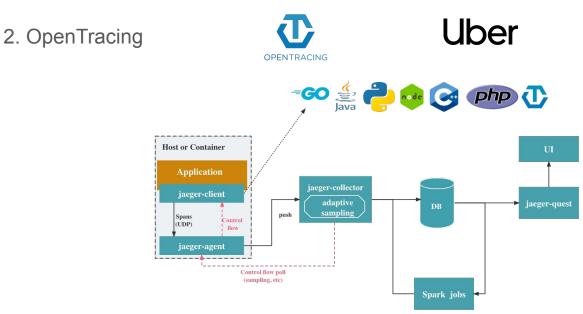
Visualization Approaches

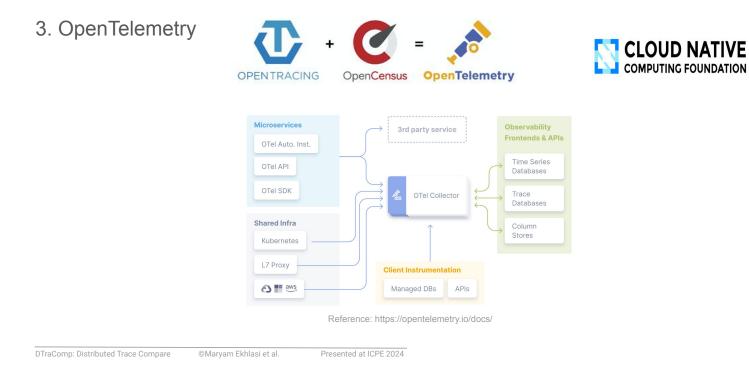

Differential Flame Graph



DTraComp: Distributed Trace Compare ©Maryam Ekhlasi et al. Presented at ICPE 2024

Distributed Tracing (High-level Tracing)


- End-to-end tracing!
- Technique for monitoring application requests as they move from frontend devices through backend services, databases, and any intermediary services.

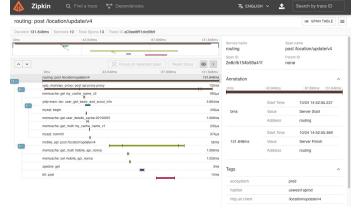

Distributed End-to-end Tracing Standards

Distributed End-to-end Tracing Standards

Reference: https://www.jaegertracing.io/docs/1.33/architecture/

Distributed End-to-end Tracing Standards

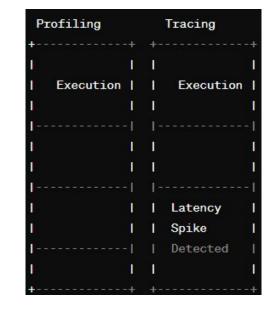
High-level Trace Visualization Tools



•	Visualizing	distributed	requests
---	-------------	-------------	----------

- Distributed context propagation
- Span's parent-child relationships

EGER UI Search Com	pare System Archited	ture Monitor	P Lookup	by Trace ID	About Jaeger v
✓ frontend: HTT dispatch 3ffc2	P GET / 8	Find	۲	~ ~ × 8	g Trace Timeline v
Start February 6 2023, 19:40:58			Total Spans 24		
	168.97ms	337.94ms		506.91ms	675.89ms
vice & Opera < > > > > >	Oµs	168.97ms	337.94ms	506	.91ms 675.89ms
frontend HTTP GET /dispatch					
frontend HTTP GET: /customer	C		286.39ms		
frontend HTTP GET			286.37ms		
frontend /driver.DriverService/Fi		214.62ms	0		
frontend HTTP GET: /route			frontend::HTTP GET	/route 42.9ms	-
frontend HTTP GET				42.88ms	
frontend HTTP GET: /route				52.34ms	
frontend HTTP GET				52.32ms	
frontend HTTP GET: /route				32.49ms	
frontend HTTP GET				32.48ms	6


DTraComp: Distributed Trace Compare

Servi ~ fr ~

28

Power of Tracing!

- Over Profiling
- Over Debugging
- Over Logging
- Over Monitoring

DTraComp: Distributed Trace Compare

©Maryam Ekhlasi et al.

Presented at ICPE 2024

Software Performance!

Deadlines!

Limited Machine Resources!

Fast!

What is Software Performance

- Software Aspects
 - Code efficiency
 - Caching strategy
 - Architecture and Design
 - Concurrency and Parallelism
- Hardware Aspects
 - Processor Speed Core Count
 - Memory (RAM)
 - Storage (HDD/SSD)
 - Network Speed
- Other Factors

DTraComp: Distributed Trace Compare

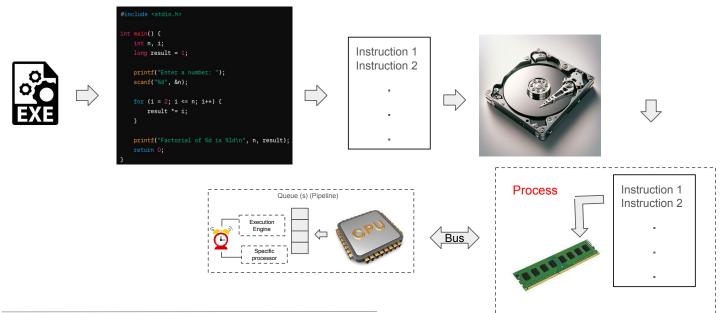
©Maryam Ekhlasi et al. Presented at ICPE 2024

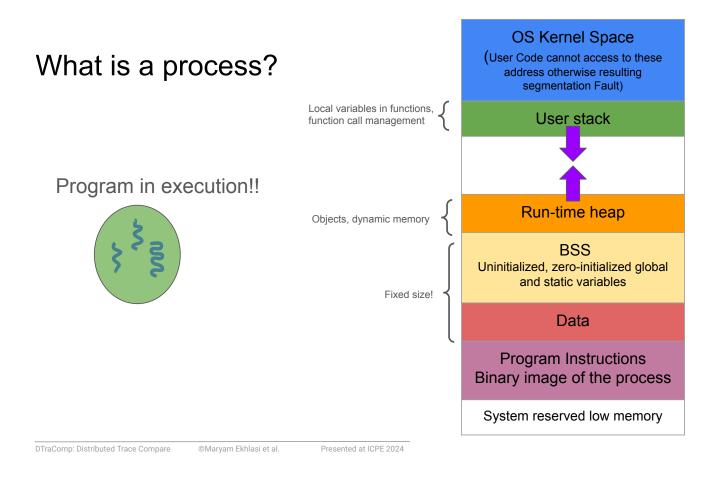
Motivation! Code Efficiency!

Executions Differences!

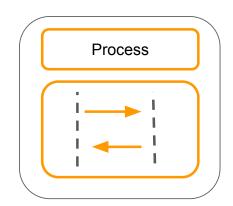
TiDB: server.dispat	tch 6e96e6d							808µs
9 Spans	TiDB (9)						Today	11:07:46 am 13 minutes ago
TiDB: server.dispat	tob 107404							747µs
TIDD. server.uispat	ICH 167494f							141µ3
9 Spans	TiDB (9)						Today	11:06:56 am 14 minutes ago
		A TIDB: server.dispatch ueded tells, 1129-6 am Counce etilja Table 9 1 Toos 1 mont.digata		VS B	TIDB: server.dispatch 1874a4 (2) Todo: 1895tan Contor Xiya Tyon 9 Tod recent Comple	1 166 Massaryettarfuare		
TraComp: Distributed Trace	Compare @Ma	rvam Ekhlasi et al	Presented at ICPE	2024				

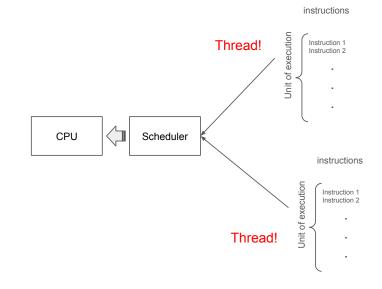
Detective DTraComp Enter!

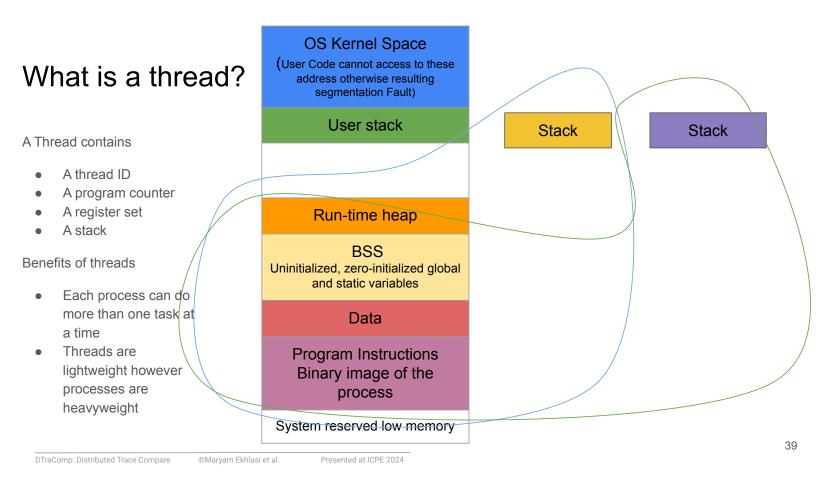

		0	50,000	100,000	150,000	200	0,000	250,00	0 30	00,000	350,00		
▼ Group2-Group1													
▼ diff						_							
0									(2.07 %) se	rver.dispa	itch		
1		(7.01	(-8.73 %) * (2.19	%) session.ParseS(11	(-0	0.10 %) s	session.Execute	Stmt)		
2				(5	.45 %) sessi ((3.33 %	6) execu	tor.Compile					
3					(-23.	5)			_				
					<u> </u>								
			1	1									
			I	I	1						I		
Start Time	End Time	Duration	Spanid	OperationName	TraceID	ThreadID	RUN - R	UNSYSTEMCALL	INTERRUPTED	WAITCPU	WAITUNKNOWN	WAITFORK	UNKNOW
	End Time 11:06:56.933 980 155			OperationName *executor.ShowExec.Next				RUNSYSTEMCALL	INTERRUPTED	WAITCPU 0	WAITUNKNOWN	WAITFORK	UNKNOW!
11:06:56.933 952 078		28,077	4442450064020525663		1618081973820362342	1805943	17108 1			WAITCPU 0 0			
11:06:56.933 952 078 11:06:56.934 022 060	11:06:56.933 980 155	28,077 20,603	4442450064020525663 6023047575761396435	*executor.ShowExec.Next	1618081973820362342 1618081973820362342	1805943 1805943	17108 1 7188 1	2915	0	0	0		
11:06:56.933 952 078 11:06:56.934 022 060 11:07:46.711 230 210	11:06:56.933 980 155 11:06:56.934 042 663	28,077 20,603 19,206	4442450064020525663 6023047575761396435 2871436018761349651	*executor.ShowExec.Next *executor.ShowExec.Next	1618081973820362342 1618081973820362342 7968810417120810813	1805943 1805943 1813228	17108 1 7188 1 10054 1	2915 5709	0	0	0 0		
11:06:56.933 952 078 11:06:56.934 022 060 11:07:46.711 230 210 11:07:46.711 292 718	11:06:56.933 980 155 11:06:56.934 042 663 11:07:46.711 249 416	28,077 20,603 19,206 10,616	4442450064020525663 6023047575761396435 2871436018761349651	*executor.ShowExec.Next *executor.ShowExec.Next *executor.ShowExec.Next *executor.ShowExec.Next	1618081973820362342 1618081973820362342 7968810417120810813	1805943 1805943 1813228 1813228	17108 1 7188 1 10054 1 4326 8	2915 5709 1450	0 0 0	0	0 0 0		
11:06:56.933 952 078 11:06:56.934 022 060 11:07:46.711 230 210 11:07:46.711 292 718 11:06:56.933 723 277	11:06:56.933 980 155 11:06:56.934 042 663 11:07:46.711 249 416 11:07:46.711 303 334	28,077 20,603 19,206 10,616 119,779	4442450064020525663 6023047575761396435 2871436018761349651 1574938190389480438	*executor.ShowExec.Next *executor.ShowExec.Next *executor.ShowExec.Next *executor.ShowExec.Next executor.Compile	1618081973820362342 1618081973820362342 7968810417120810813 7968810417120810813	1805943 1805943 1813228 1813228 1805943	17108 1 7188 1 10054 1 4326 8 68216 5	2915 5709 1450 5727	0 0 0	0	0 0 0		
11:06:56.933 952 078 11:06:56.934 022 060 11:07:46.711 230 210 11:07:46.711 292 718 11:06:56.933 723 277 11:07:46.711 033 606	11:06:56.933 980 155 11:06:56.934 042 663 11:07:46.711 249 416 11:07:46.711 303 334 11:06:56.933 843 056	28,077 20,603 19,206 10,616 119,779 99,314	4442450064020525663 6023047575761396435 2871436018761349651 1574938190389480438 7456353795818001242	*executor.ShowExec.Next *executor.ShowExec.Next *executor.ShowExec.Next *executor.ShowExec.Next executor.Compile executor.Compile	1618081973820362342 1618081973820362342 7968810417120810813 7968810417120810813 1618081973820362342	1805943 1805943 1813228 1813228 1813228 1805943 1813228	17108 1 7188 1 10054 1 4326 8 68216 5 52290 4	2915 5709 1450 727 3966 9358	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0

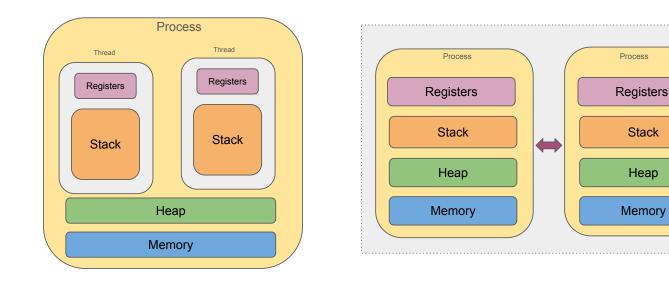

We need more detail informations to answer this question!

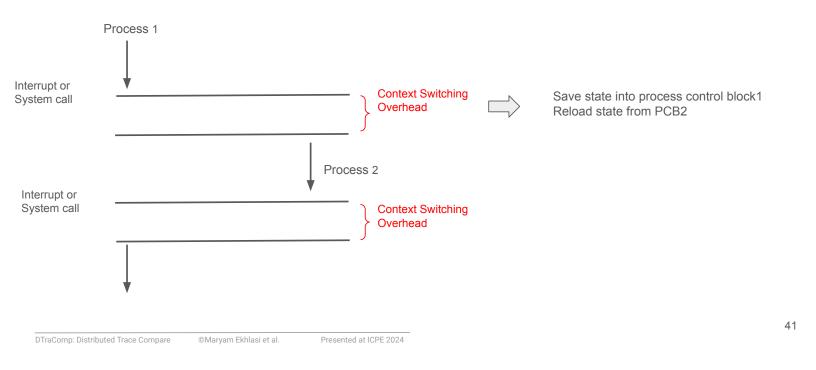
What is happening inside the system?!

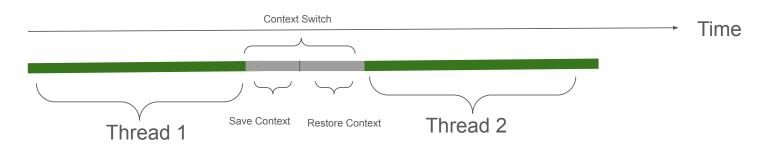

- How a program runs?
- What are the processes and threads?
- What are kernel and user space levels?
- What are process/ thread states?

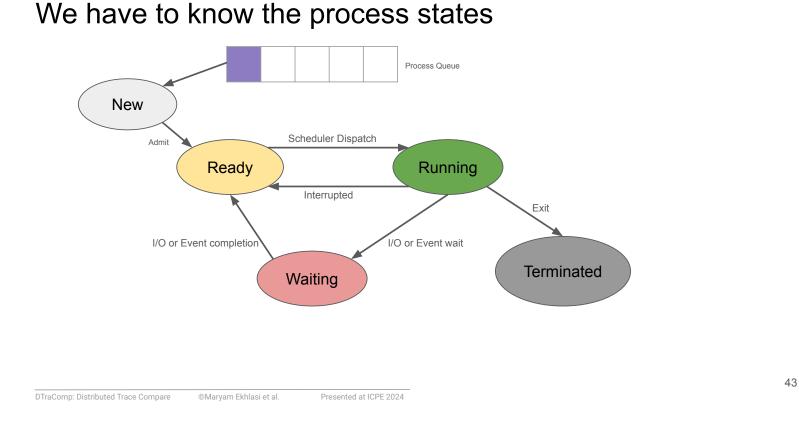

What is a process?



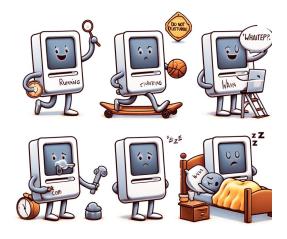

What is a thread?

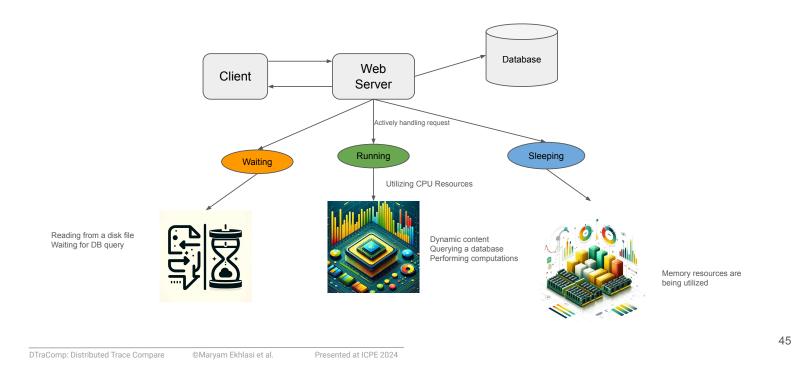

Differences between threads and Processes


Stack

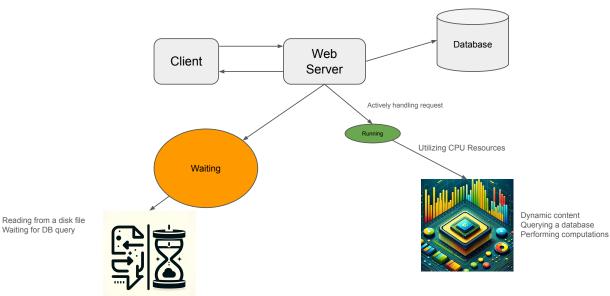

Heap

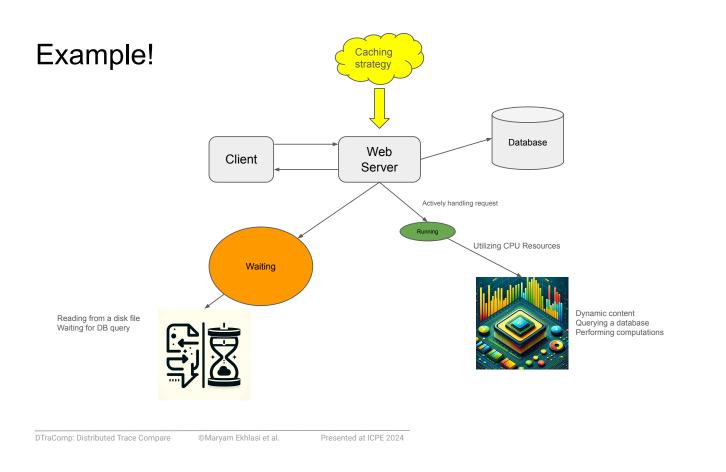
Context Switch in processes


Context Switch in threads

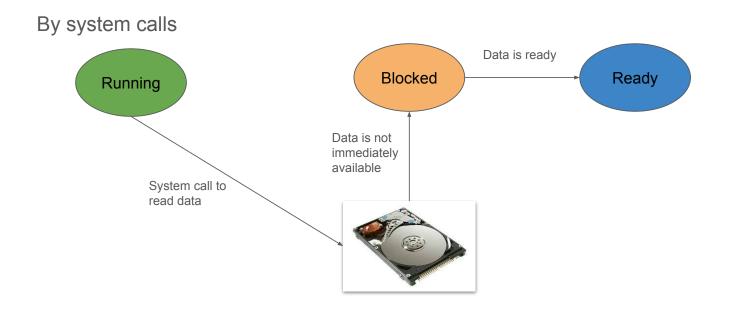


What the state of a process can tell us

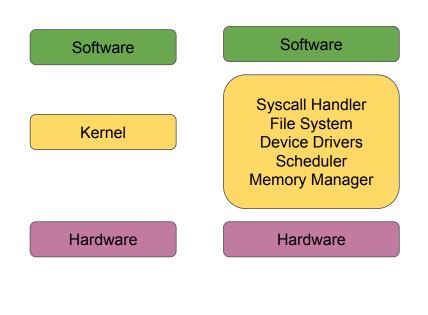

- Process Status
- Resource Utilization
- Prioritization
- I/O Status
- Inter-process Communication (IPC)
- Concurrency and Parallelism
- Life Cycle Management



Example!



Example!



How we can know why the process is in the waiting state?

What is Kernel?

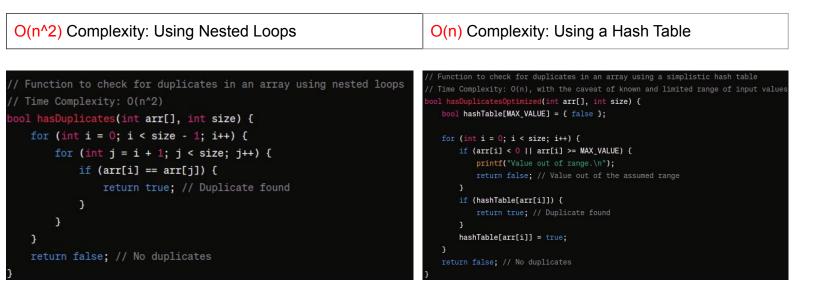
DTraComp: Distributed Trace Compare

©Maryam Ekhlasi et al. Presented at ICPE 2024

What are system calls?

- Process Control
- File Manipulation
- Device Management
- Information Maintenance
- Communication

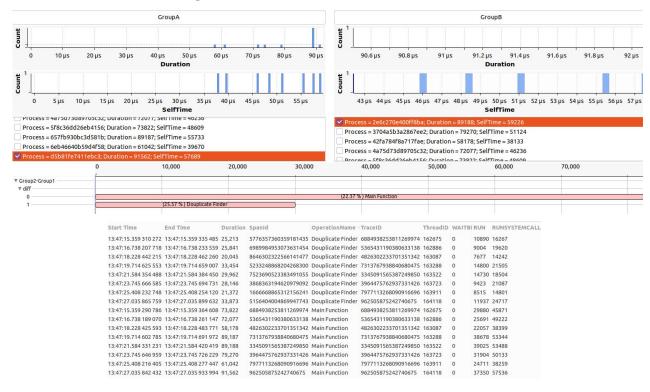
We have all the required information let's have an example!


©Maryam Ekhlasi et al. Presented at ICPE 2024

What is the time complexity?

52

Actual Use case - C Language



DTraComp: Distributed Trace Compare

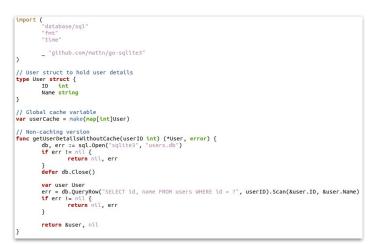
©Maryam Ekhlasi et al. Preser

Presented at ICPE 2024

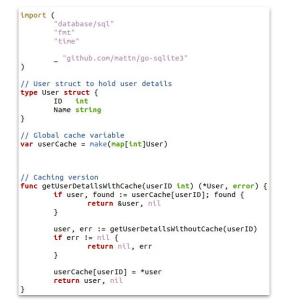
Differential Flame graph

What is Software Performance

- Software Aspects
 - Code efficiency
 - Caching strategy
 - Architecture and Design
 - Concurrency and Parallelism


• Hardware Aspects

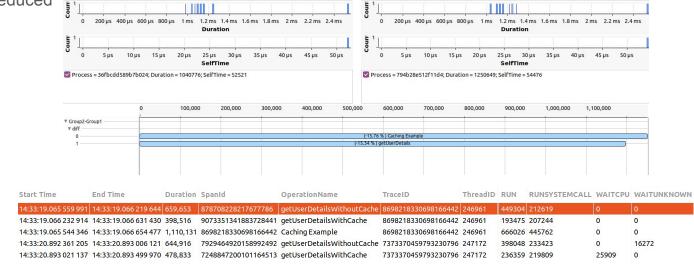
- Processor Speed Core Count
- Memory (RAM)
- Storage (HDD/SSD)
- Network Speed
- Other Factors


DTraComp: Distributed Trace Compare ©Maryam Ekhlasi et al. Presented at ICPE 2024

Caching Strategy

No-caching

Execution time without cache: 0.05859804153442383 seconds Execution time with cache: 0.0003237724304199219 seconds


Expectation: Increase in blocked time and wait time since we need to fetch data from database More context switch and cpu execution time for handling connection

What do you expect?

- Without Caching: Expect more frequent and longer periods in the I/O wait and possibly blocked states
- With Caching: The frequency and duration of I/O wait and blocked states are significantly reduced

Expectations are Confirmed!

- Without Caching: Expect more frequent and longer periods in the I/O wait and possibly blocked states
- With Caching: The frequency and duration of I/O wait and blocked states are significantly reduced

What is Software Performance

- Software Aspects
 - Code efficiency
 - Caching strategy
 - Architecture and Design
 - Concurrency and Parallelism

• Hardware Aspects

- Processor Speed Core Count
- Memory (RAM)
- Storage (HDD/SSD)
- Network Speed
- Other Factors

DTraComp: Distributed Trace Compare ©Maryam Ekhlasi et al. Presented at ICPE 2024

Concurrency and Parallelism

CPU Bound Example:

Parallel and sequential

DTraComp: Distributed Trace Compare

©Maryam Ekhlasi et al. Presented at ICPE 2024

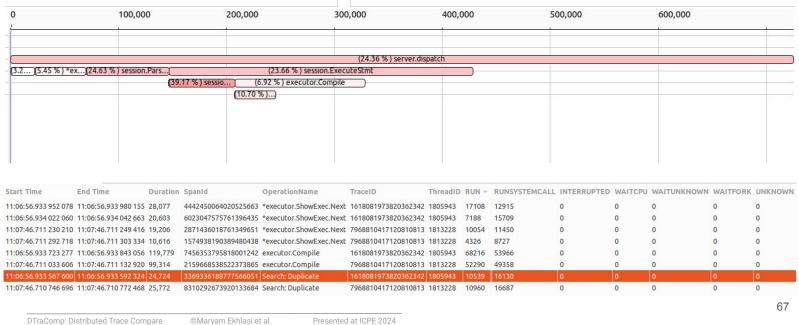
What do you expect?

Performance Metrics!

Start Time	End Time	Duration	SpanId			OperationName	TraceID	ThreadID	WAITBLOCKED	RUN	RUNSYSTEMCALL	WAITCP
10:51:16.862 378 440	10:51:16.862 406 586	28,146	84090960	3520008	89774	calculateFibunacciParall	el 2881530242770011486	2410233	0	11378	19128	0
10:51:16.862 313 417	10:51:16.862 464 834	151,417	87177279	1326403	3703	calculateFibunacciParall	el 2881530242770011486	2410227	53358	35115	79117	9567
10:51:16.862 346 033	10:51:16.862 506 809	160,776	91692175	5182384	15228	calculateFibunacciParall	el 2881530242770011486	2410227	53358	28973	70736	9567
10:51:16.862 278 217	10:51:16.862 517 355	239,138	28815302	4277001	1486	fibunachi	2881530242770011486	2410227	53358	66529	115698	9567
10:51:21.713 643 539	10:51:21.713 676 923	33,384	65148513	1000107	3122	calculateFibunacciSeque	n 5476396147119877088	2410540	0	9424	25903	0
10:51:21.713 692 777	10:51:21.713 712 263	19,486	74656713	1047591	4216	calculateFibunacciSeque	n 5476396147119877088	2410540	0	5235	16687	0
10:51:21.713 632 643	10:51:21.713 729 933	97,290	88072250	3931920	3146	calculateFibunacciSeque	n 5476396147119877088	2410540	0	33155	66468	0
10:51:21.713 609 456	10:51:21.713 754 727	145,271	54763961	4711987	7088	fibunachi	5476396147119877088	2410540	0	52978	94605	0
⊫ parallel ×												
Trace	Timestamp	Channe	el	CPU	Even	t type	Contents					
≪srch>	<srch></srch>	<srch></srch>		<srch></srch>	<srch< td=""><td>1></td><td><srch></srch></td><td></td><td></td><td></td><td></td><td></td></srch<>	1>	<srch></srch>					
kernel	10:51:16.862 308 6	68 kernel	channel 5	5	sche	d switch	prev comm=swapper/5, p	rev tid=0,	prev prio=20, pre	v state	=0, next comm=fibu	nachi-par
kernel	10:51:16.862 309 5	76 kernelo	channel 14	14	write	back dirty page	name=259:0, ino=2176499	9, index=20	06, context.packe	t seq	num=21, context.cpu	id=14, co
kernel	10:51:16.862 309 5	76 kernelo	channel_8	8	powe	er_cpu_idle	state=2, cpu_id=8, contex	t.packet_se	q_num=10, conte	xt.cpu_	id=8, contexttid=0,	context.
kernel	10:51:16.862 311 0	42 kernelo	channel 14	14	write	back mark inode dirty	name=259:0, ino=2176499	9, state=7,	flags=4, context.p	acket	seq_num=21, contex	t.cpu id=
kernel	10:51:16.862 311 0	42 kernelo	channel_4	4	sysca	all_exit_clock_gettime	ret=0, tp=1407307337190	08, context	packet_seq_num	=8, cont	text.cpu_id=4, conte	xttid=24
kernel	10:51:16.862 311 0	42 kernel	channel_5	5	sysca	all_exit_futex	ret=0, uaddr=8246347697	36, uaddr2:	=0, context.packet	_seq_n	um=10, context.cpu	id=5, con
kernel	10:51:16.862 312 4	39 kernelo	channel_1	1	sysca	all_entry_recvmsg	fd=33, msg=14072255322	5216, flags:	=0, context.packet	_seq_n	um=7, context.cpu_i	d=1, cont
kernel	10:51:16.862 312 4	39 kernel	channel_14	14	write	back_mark_inode_dirty	name=259:0, ino=2176499	9, state=7,	flags=7, context.p	acket	seq_num=21, contex	t.cpu_id=
kernel	10:51:16.862 312 4	39 kernelo	channel_4	4	sysca	all_entry_clock_gettime	which_clock=1, context.pa	cket_seq_r	um=8, context.cp	u_id=4	contexttid=24102	27, contex
kernel	10:51:16.862 312 4	39 kernelo	channel_5	5	sysca	all_entry_clock_gettime	which_clock=1, context.pa	cket_seq_r	num=10, context.c	pu_id=	5, contexttid=2410	233, conte
kernel	10:51:16.862 313 4	17 kernelo	channel_14	14	write	back_dirty_inode_start	name=259:0, ino=2176499	9, state=7,	flags=7, context.p	acket_	seq_num=21, contex	t.cpu_id=
ust/uid/1000/64-b	it 10:51:16.862 313 4		annel_4		jaege	er_ust:start_span	trace_id_high=0, trace_id_	low=28815		span_i	d=871772791326403	3703, pari
		14 kernelo				m_kfree	call_site=0xffffffffa9aaa2	cd, ptr=0x0	context.packet_s	eq_nur	n=7, context.cpu_id:	=1, contex
	10:51:16.862 314 8	14 kernelo	channel_14			m_cache_alloc	call_site=0xffffffffa94be8	65, ptr=0xf	fff99a4000c5a80,	bytes_r	eq=56, bytes_alloc=	56, gfp_fla
	10:51:16.862 314 8	14 kernelo	channel_4			all_exit_clock_gettime	ret=0, tp=1407307337179		.packet_seq_num		text.cpu_id=4, conte	xttid=24
	10:51:16.862 314 8	14 kernelo	channel_5		sysca	all_exit_clock_gettime	ret=0, tp=1398328608611		.packet_seq_num		ntext.cpu_id=5, cont	exttid=2
	10:51:16.862 315 7	92 kernelo	channel_1			all_exit_recvmsg	ret=-11, msg=1407225532		ext.packet_seq_n		context.cpu_id=1, co	ntexttid
	10:51:16.862 315 7	92 kernelo	channel_14			k_touch_buffer	dev=271581186, sector=8				seq_num=21, conte	kt.cpu_id=
	10:51:16.862 315 7	92 kernelo	channel_5			all_entry_clock_gettime	which_clock=1, context.pa	cket_seq_r		pu_id=		233, conte
	10:51:16.862 317 1	88 kerneld				all_entry_recvmsg		5232, flags:	=0, context.packet	_seq_n	um=7, context.cpu_i	d=1, conti
	10:51:16.862 317 1	88 kerneld	channel_14			m_cache_free	call_site=0xffffffffa94bf0	e6, ptr=0xfl	ff99a4000c5a80, i			cket_seq_
	10:51:16.862 318 1	66 kernelo				m_kfree	call_site=0xffffffffa9aaa2	cd, ptr=0x0	context.packet_s	seq_nur	m=7, context.cpu_id:	=1, contex
kernel	10:51:16.862 318 1	66 kernelo	channel 14		write	back dirty inode	name=259:0, ino=2176499	9. state=7.	flags=7, context.c	acket	seg num=21. contex	t.cou id=

Is parallel mechanism good for all situations?

- When Parallelism Is Beneficial
 - I/O-Intensive Tasks
 - Highly Concurrent Applications
 - Tasks with High Latency Operations
- When Parallelism May Not Be Beneficial
 - Computationally Intensive Tasks
 - Memory Bandwidth Saturation
 - Scaling Issues


I/O intensive tasks!

Span Metrics Summ	ary ×												
Start Time E	End Time D	uration Sp	anId	OperationName		TraceID	ThreadID	WAITBLOCKED	RUN	RUNSYSTEMCALL	INTERRU	PTED	WAITCP
12:40:39.048 186 492 1	12:40:49.056 377 540 1	0,008,191,048 77	16729211	719815633 sequentialIO		1543448237193233578	2606198	10006110793	566716	789417	14386	3	712288
12:40:49.056 469 731 1	12:40:50.057 822 420 1	,001,352,689 273	33284349	49176064 ParallelIO		1543448237193233578	2606198	1001026179	217319	99977	0		12431
12:40:39.048 166 936 1	12:40:50.057 847 773 1	1,009,680,837 154	43448237	193233578 ioIntensiveTask		1543448237193233578	2606198	11007136972	920359	910197	14386		724719
≣ ioparallel ×													
Trace	Timestamp	Channel	CPU	Event type	Contents						TID	Prio	PID
🔗 <srch></srch>	<srch></srch>	<srch></srch>	<srch></srch>	<srch></srch>	<srch></srch>						<srch></srch>	<srch< td=""><td>> <srch< td=""></srch<></td></srch<>	> <srch< td=""></srch<>
kernel	12:40:49.056 355 191	kernelchannel_0	0	timer_hrtimer_start	hrtimer=0>	ffff99aa2e423220, func	tion=0xffff	ffffa9188da0, exp	ires=525	913560000000, soft	× 0	20	0
kernel	12:40:49.056 356 658	kernelchannel_1	5 15	syscall_exit_clock_gettime	ret=0, tp=1	40731946925616, conte	ext.packet_	seq_num=17, con	text.cpu_	id=15, contexttid=	2606198	20	26061
kernel	12:40:49.056 359 102	kernelchannel_0	0	power_cpu_idle	state=3, cp	u_id=0, context.packet	_seq_num=	22, context.cpu_id	d=0, cont	exttid=0, context.	0	20	0
kernel	12:40:49.056 359 102	kernelchannel_1	5 15	syscall_entry_futex	uaddr=824	634769736, op=129, val	=1, utime=0), uaddr2=0, val3=	0, contex	t.packet_seq_num=	2606198	20	2606
kernel	12:40:49.056 362 874	kernelchannel_1	5 15	sched_waking	comm=iolr	tensivePara, tid=26062	204, prio=20	, target_cpu=13,	context.p	oacket_seq_num=17	2606198	20	2606
kernel	12:40:49.056 366 156	kernelchannel_1	5 15	syscall_exit_futex	ret=1, uado	dr=824634769736, uadd	r2=0, conte	xt.packet_seq_nu	im=17, co	ontext.cpu_id=15, co	2606198	20	26061
kernel	12:40:49.056 376 074	kernelchannel_1	5 15	syscall_entry_clock_gettime	which_cloc	k=1, context.packet_se	q_num=17,	context.cpu_id=1	5, contex	ttid=2606198, cor	2606198	20	26061
ust/uid/1000/64-bi	it 12:40:49.056 377 540	userchannel_15	15	jaeger_ust:end_span	trace_id_hi	igh=0, trace_id_low=154	4344823719	3233578, span_id	=771672	9211719815633, dur	2606198		26061
kernel	12:40:49.056 378 937	kernelchannel_1	5 15	syscall_exit_clock_gettime	ret=0, tp=1	40731946924976, conte	ext.packet_	seq_num=17, con	text.cpu	id=15, contexttid=	2606198	20	26061
kernel	12:40:49.056 387 668	kernelchannel_1	5 15	syscall_entry_clock_gettime	which_cloc	k=0, context.packet_se	q_num=17,	context.cpu_id=1	5, contex	ttid=2606198, cor	2606198	20	26061
kernel	12:40:49.056 390 042	kernelchannel_1	5 15	syscall_exit_clock_gettime	ret=0, tp=1	40731946925904, conte	ext.packet_	seq_num=17, con	text.cpu	id=15, contexttid=	2606198	20	26061
kernel	12:40:49.056 391 998	kernelchannel_1	5 15	syscall_entry_clock_gettime	which_cloc	k=1, context.packet_se	q_num=17,	context.cpu_id=1	5, contex	ttid=2606198, cor	2606198	20	26061
kernel	12:40:49.056 394 791	kernelchannel_1	5 15	syscall_exit_clock_gettime	ret=0, tp=1	40731946925888, conte	ext.packet_	seq_num=17, con	text.cpu	id=15, contexttid=	2606198	20	26061
kernel	12:40:49.056 417 001	kernelchannel_1	5 15	kmem_mm_page_alloc	page=0xfff	fcff9112e1f80, pfn=450	3678, orde	r=0, gfp_flags=17	829322, 1	nigratetype=1, cont	2606198	20	26061
kernel	12:40:49.056 425 103	kernelchannel_1	5 15	kmem_mm_page_alloc	page=0xfff	fcff90a68a880, pfn=272	28610, orde	r=0, gfp_flags=17	829322,	migratetype=1, conl	2606198	20	26061
kernel	12:40:49.056 457 858	kernelchannel_1	5 15	kmem_mm_page_alloc	page=0xfff	fcff9151f1e80, pfn=553	6890, orde	r=0, gfp_flags=17	829322, 1	nigratetype=1, cont	2606198	20	2606
kernel	12:40:49.056 461 630	kernelchannel_1	5 15	kmem_mm_page_alloc	page=0xfff	fcff90553ea80, pfn=139	96650, orde	r=0, gfp_flags=17	829322,	migratetype=1, con	2606198	20	2606
kernel	12:40:49.056 468 335	kernelchannel_1	5 15	syscall_entry_clock_gettime	which_cloc	k=1, context.packet_se	q_num=17,	context.cpu_id=1	5, contex	ttid=2606198, con	2606198	20	2606
											2606198		
		kernelchannel_1		syscall_exit_clock_gettime							2606198		
		kernelchannel_1		syscall_entry_clock_gettime							2606198		
	12:40:40 056 479 253	kernelshappel t	6 10	syscall exit clock gettime	sat 0 to 1	40721046025004 cook					2606100		

What we created!

Differential Flame Graph and System metrics

DTraComp: Distributed Trace Compare

©Maryam Ekhlasi et al.

Why differential flame graph

- Software performance analysis
- Latency detection
- New Software version or system updates
- Runtime discrepancies
- Pinpoint root causes

Flame Graph

- An aggregated view of the function calls from the call stack
- Each entry (box) represents a function in the stack.
- The x-axis represents total duration (execution time) and not absolute time.
- The width of an entry is the total time spent in that function, including time spent calling the children.
- Comprehensive yet simple and concise view, ideal for comparison

	,0.000 s	0.002 s	0.004 s	0.006 s	0.008 s	0.010 s	0.012	s 0.014 s	0.016	s 0.018	S
E Is-9922											
0						main					
1						print_dir					
2	p file_ignor	ed gobble	file		print_current_files				sort_files		
3	patter	xstrdup			print_many_per_line				mpsort		
4		xmemdup	len	gth_of calculate_c	print_file_name_an	-	1	n	psort_with_tmp	1	
5		x	que	te length	print_name		xstrco	mpsort_into_tmp	mpso	ort_with_tmp	
6			qu.	quot	quote		cm x	mpsort_with_tmp	xsmpsort_into	mpsort_with_tmp	
7				qu	qu			mpsortmpsort_in	mpsort_wi	mpsortmpsort_v	wi
8							_	mm mpsort.	m mps	mpsor m mp	JS
9										m	
10											
11											(III)
12											0
13											
14								HII III		111 11 1	ili -
15											

Differential Flame Graph-Computation

Suppose having two traces, we need to compare them

Differential Flame Graph

		F2-F1/F1	
A2-A1/	A1	B2-B1/B1	C2-C1/C2
Н		Κ	G2-G1/G1

Differential Flame Graph-Representation

Color

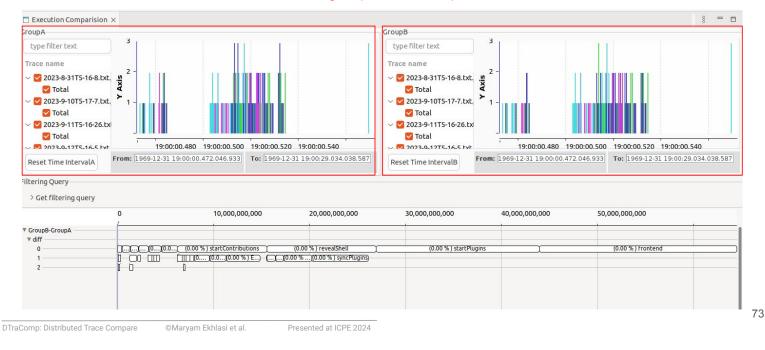
DTraComp: Distributed Trace Compare

- Flame Graph: The color of each function is randomly assigned based on the function name
- Differential Flame Graph: colors are assigned based on the difference ratio

Presented at ICPE 2024

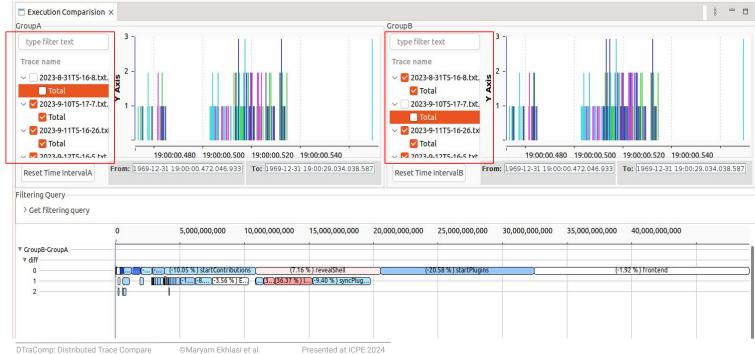
- Red color palette for longer execution
- Blue color palette for shorter execution
- White for difference ratio between -5% and 5%

	0	10,000,000	20,000,000	30,000,000	40,000,000	50,000,000	60,000,000	70,000,000	80,000,000
oB-GroupA									
		50.28 %) Ho(5.05 %) Nod	JeFi (-21.87 %) FileDow	nl)(57.22 %) PluginLoca	alizationServer.initi		4.30 %) PluginLocalizationB	ackendContribution.initia	lize
	(*8)				((29				

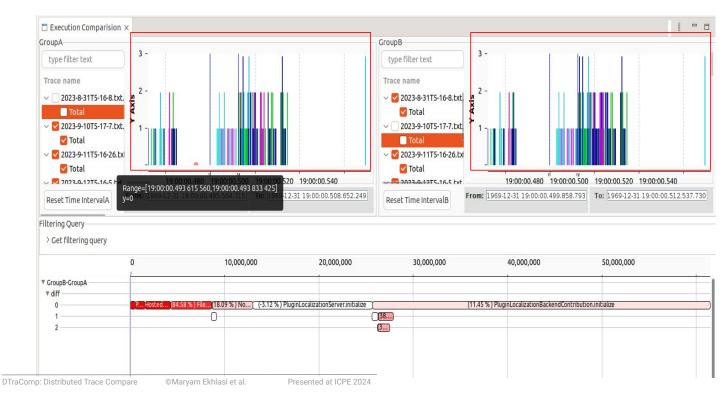

Execution Comparison

• We have two mode for execution comparison

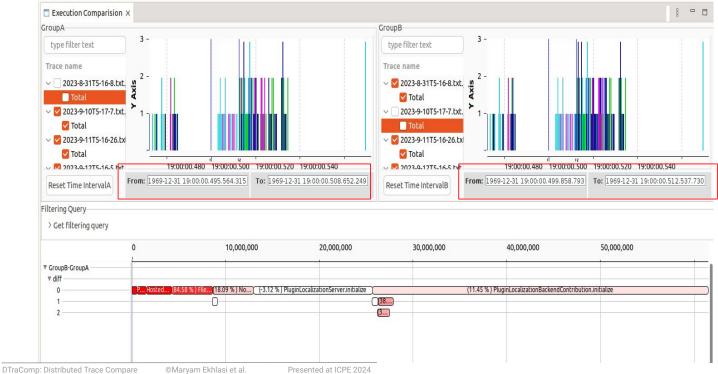
©Maryam Ekhlasi et al.

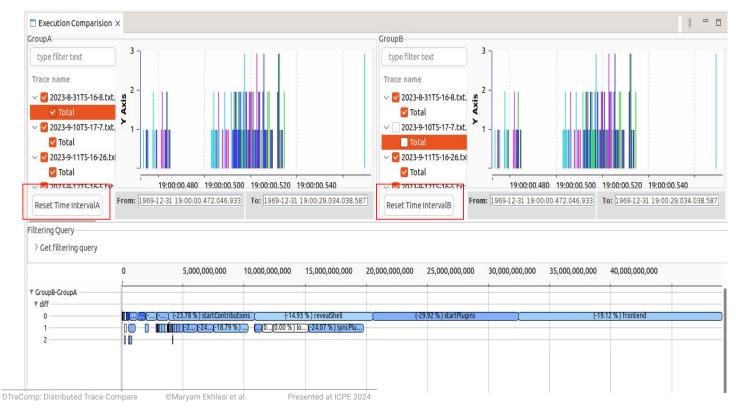

- Sequential traces
- Distributed microservice-based system's traces (request comparison)

Sequential trace comparison

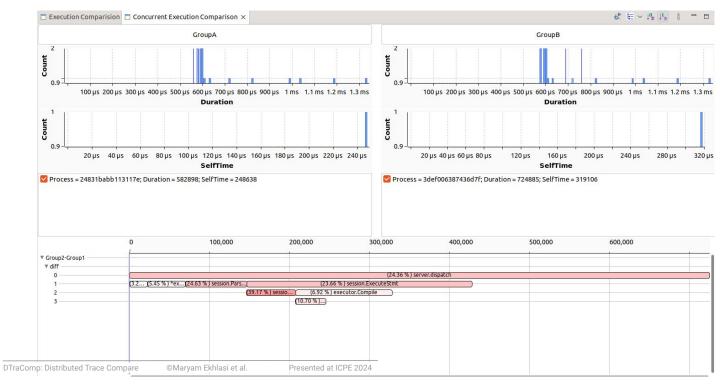


Select two groups to be compared


Select Relevant Traces


Select desired time range graphically

Select desired time range textually


Reset to initial state

Experiment reproducibility

Request comparison

Let's collect traces and see the result in TraceCompass!

Find all the commands here

https://github.com/maryamekhlasi/ICPE2024

DTraComp: Distributed Trace Compare

©Maryam Ekhlasi et al.

Presented at ICPE 2024

Installing LTTng on Ubuntu

1. Add the LTTng Stable 2.13 PPA repository and update the list of packages

```
# apt-add-repository ppa:lttng/stable-2.13
# apt-get update
```

2. Install the main LIIng 2.13 packages

```
# apt-get install lttng-tools
# apt-get install lttng-modules-dkms
# apt-get install liblttng-ust-dev
```

Recording Kernel Events With LTTng

1. Checking the status of session daemon \$ systemct1 status lttng-sessiond 2. Starting the session \$ sudo systemctl start lttng-sessiond 3. Create tracing session \$ sudo lttng create ICPE2024 --output="/home/maryam/Poly/Dorsal/traces/dataset/ICPE202" Enable Events 4. \$ sudo lttng enable-event -k -a Start Tracing 5. \$ sudo lttng start Do something! Open a browser! 6. \$ wget www.google.com Stop and destroy the Tracing session 7. \$ sudo lttng destroy

Installing TraceCompass

1. Installing Java

java -version sudo apt update sudo apt install default-jre

2. Installing TraceCompass

Go to https://eclipse.dev/tracecompass/

Tar xf <name>

Cd trace-compass

./tracecompass

Empty space TraceCompass

	▼ File Tools Window Help	Trace Compass –	+ ×
ίζ.	Project Explorer X	Image: Resources × Image: Control Flow Image: Statistics Image: Statistics Image: Resources × Image: Resources ×	•
,	There are no projects in your workspace. To add a project: To <u>create a new Tracing</u> project Create a project Create a project		
	E Control X 모 프 프 이 너희 사람 순구 순이 위 또 type filter text	Selection Start 0 Selection End 0 Window Span 0	
DTraComp: Distributed Trace Comp	pare ©Maryam Ekhlasi e	et al. Presented at ICPE 2024	

85

Create a tracing project

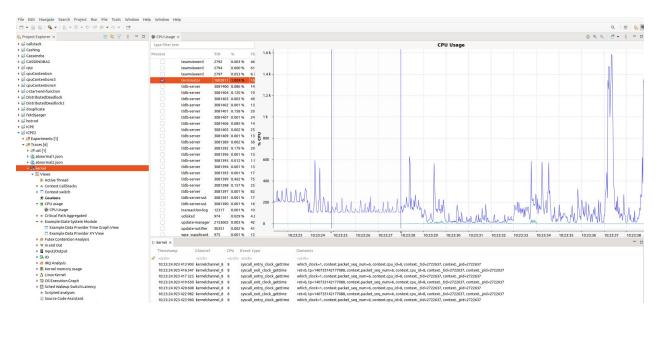
File >> new tracing	project	▼ File Tools Window Help	Trace Compas	55	- + ×
		Project Explorer × □ □ २ ○ २ ३ २	t⊊ Resources × ⇒ Control How	tatistics 14 🖅 🚡 🖏 🗞 🏷 🗞 👻 🕜 🔮	
			↓ Histogram × □ Properties ↓ Bool	okmarks	
		문 Control X 모 모 모 중 화 화 상 순 순 ► ▼ type filter text	Selection Start 0 Selection End 0 Window Span 0		
DTraComp: Distributed Trace Compare ©N	faryam Ekhlasi et al.	Presented at ICPE 2024		®	86

Install the required add-ons

▼ File Tools Window Help	Trace Compass —	- + ×	Install Extensions
Pr Add-ons	E Resources × ■ Control Flow Statistics		Select extensions to install. Press Finish to proceed with installation. Press the information button to see a detailed overview and a link to more information.
	★ 第 目 首 転 号 ち ち ち + く く ざ	- 8	Find: Show Installer
🕨 🚰 Tracing			scripting framework. École Polytechnique de Montréal
		ſ	Trace Compass Scripting Python (Incubation)
			This feature provides Python scripting capabilities to Trace Compass, using the EASE scripting framework. École Polytechnique de Montréal
			Call Stack analyses
			Contains feature related to call stack data, stack traces, sampling, etc.
			Generic Callstack (Incubation)
			Generalization of the callstack/callgraph analysis to support data-driven stacks and stacks not grouped by process/thread. API for sampled or instrumented applica École Polytechnique de Montréal
	🛔 Histogram 🗙 🗖 Properties 🗐 Bookmarks		Trace Types
	Selection Start 0		Perf Profiling (Incubation)
E Control X	Selection End		Adds a trace type for perf traces converted to CTF and support of perf's profiling data in the callstack analyses.
SHN ⊕ ⊕ ► ▼	Window Span		École Polytechnique de Montréal
type filter text	0		Trace Compass for Android Traces (Incubation)
			Cancel Finish
D items selected	1981		

DTraComp: Distributed Trace Compare

©Maryam Ekhlasi et al.


Presented at ICPE 2024

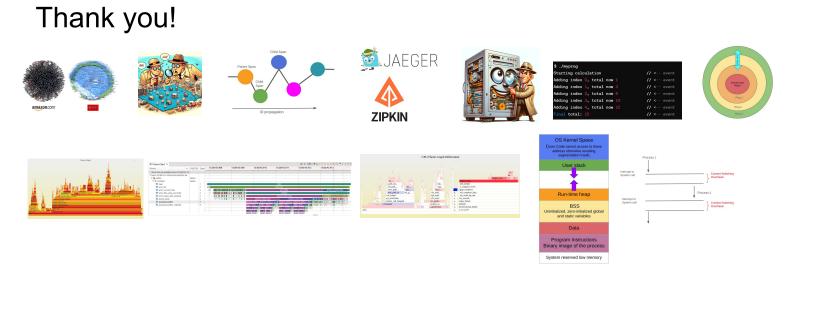
Import traces

			Trace Compass	×
<u>F</u> ile Tools Windo	w <u>H</u> elp			
웥 Pro 🛿 🗖 🗖	Prontrol Flow №	te Resources	🗆 Statistics 😁	
🖻 🍇 🔻		📫 🗎 🍄	• E D 🗣 🚓 🐉 🗣 😌 😌 🔍 🔍 X 💠 🗢 🖨 B 🖛	~
🔻 🛃 Tracing	Process	TID PTID		
🧀 Experiment	s			
🐸 Traces (0)	pen Trace			
	pen As Experiment			
	nport			
	lew Folder			
c	lear	Delete		-
Ir	nport Trace Package		-	
E	etch Remote Traces			
E	xport Trace Package			
N	lanage Custom Parser	s		
N	<u>1</u> anage XML analyses.			
A	pply Time Offset			
c	lear Time Offset			
🗄 Co 🖾 😁 R	e <u>f</u> resh	F5	Bookmarks 🔉 👘 👻 🖻	
 M M - 	Selection Start	0		
type filter text	Selection End			
aperneer cent as	Selection End	0		
	0			
> Traces [0]			60	
Traces [0]				

Select root directory:	/home/maryam/lttng-traces/my-session-202	•	Browse	
Select archive file:		-	Browse	
race Type:	<automatic detection=""></automatic>			
Import unrecognized				
ptions Overwrite existing tra Create links in works Preserve folder struc	ace without warning pace			
Create experiment	my-session-20240227-155123			

View results

89


©Maryam Ekhlasi et al.

Presented at ICPE 2024

Source codes are available for free!

- 1. <u>https://github.com/eclipse-tracecompass-incubator/org.eclipse.tracecompass.i</u> <u>ncubator</u>
- 2. <u>https://git.eclipse.org/r/c/tracecompass.incubator/org.eclipse.tracecompass.in</u> <u>cubator/+/196496</u>

DTraComp: Distributed Trace Compare ©Maryam Ekhlasi et al. Presented at ICPE 2024

References

- 1. https://lttng.org/docs/v2.13/
- 2. https://eclipse.dev/tracecompass/
- 3. <u>https://github.com/dorsal-lab/Tracevizlab/</u>
- 4. https://www.brendangregg.com/
- 5. Maryam Ekhlasi, Fatemeh Faraji Daneshgar, Michel Dagenais, et al. DTraComp: Comparing distributed execution traces for understanding intermittent latency sources. Authorea. October 18, 2023.