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• Part 1: Performance perspective with focus on production deployments

• Part 2: Performance analysis in the industry, methodology and case studies

Agenda 
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Part 1: Performance 
perspective with focus on 
production deployments
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• Life in 2010 vs. Now

• Performance Monitoring Universe 

• Production Deployments Asks

• Detour: essential STEPs of Performance Analysis 
• Profiling

• Architecture features intertwined with Analysis

• Large Scale Deployments
• App Telemetry

• Tools, data collection, methodology and Analysis

• Challenges

Part-1 
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Life used to be simple… 

….and performance analysis ☺

• Single or Dual Cores

• Fixed Frequency

• Uniform Memory

• Simple I/O

• Baremetal OS

Caches

Memory 

Controller

Memory 

Devices

PCIe etc.

NIC, Disks

Cores

6
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Life used to be simple…           Now… 

• vCPUs > 512

• Frequency/Boost 

• Per core power control

• NUMA

• Multi-nodes to Microservices

• Cloud VMs, Hypervisors, Containers

• System and Application telemetry

• Open-source and proprietary tools

• AI based scheduling and problem analysis 

• Dual Cores

• Fixed Frequency

• Uniform Memory

• Simple I/O

• Baremetal OS

Caches

Memory 

Controller

Memory 

Devices

PCIe etc.

NIC, Disks

Cores

….and performance analysis ☺

Caches

Memory Devices

PCIe, etc.
NIC, Disks

Cores

Caches

Cores

Caches

Cores

Caches

Cores

Caches

Cores

Caches

Cores

Memory Memory Memory 
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Performance monitoring universe…

• Application Telemetry

• VM logs

• OS monitoring/tracing

• System level

• Process Specific/Functional level

• Custom tools

• PMCs/PMUs validation/testing 

• New PMCs/PMUs research  

OS

VMs

Apps

Frameworks

8
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Performance monitoring universe … this tutorial focus…

• Application Telemetry

• VM logs

• OS monitoring/tracing

• System level

• Process Specific/Functional level

• Custom tools

• PMCs/PMUs validation/testing 

• New PMCs/PMUs research  

OS

VMs

Apps

Frameworks

+
Latest 

production 

deployment 

focus
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What typical production deployments requesting…

• Few important counters … all the time at right granularity

• On demand or based on some alerts … detailed counters capture 

➔All above … using open-source tools (Linux Perf)

➔Automation to correlate … above with application telemetry! 

➔Should lead to … better configurations, optimizations and TCO

10
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What typical production deployments requesting…

• Few important counters … all the time at right granularity

• On demand or based on some alerts … detailed counters capture 

➔All above … using open-source tools (Linux Perf)

➔Automation to correlate … above with application telemetry! 

➔Should lead to… better configurations, optimizations and TCO

➔In 1-2 years… generate enough training data set for LLMs ☺

Short term: Apply RAG, create Agents

Long Term: AIPerfEngineer! 
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What typical production deployments requesting…

• Yes, we have a proposed methodology which is not perfect, 

but pretty good! 

• It starts with basic  fundamentals…

12
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Before executing the application … ensure…

• Platform Configuration

• Log the config details using many tools 

• Develop automatic compare and alerts
• CPU models, Memory DIMMs, Disks, etc.

• System Health check

• Collect quick basic performance evaluation 
• Memory bandwidth and latency 

• I/O perf, etc.
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STEP 1 of any performance analysis … understand…

CPU

Memory (used)

I/O

Execution phases

• The high-level characteristics of the application

14
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How to profile an application…

Container

VM

VM

Host

• Many tools available

• Basic vmstat 
• Collect and view in histogram 

• Check if running at 

• Host level or 

• VM level

15
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How to profile an application … vmstat

• vmstat   https://access.redhat.com/solutions/1160343

• Waiting threads

• Memory use

• I/O

• Interrupts

• Context Switch 

• CPU %: user, system, I/O wait, and idle 

16
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STEP 2 … understand the platform and its features

CPU CPU
CPUCPU CPU

CPU
CPU

CPU

1P                     2P                            Blade 

Servers

Disk  NIC Disk  NIC

Disk  NIC

• 1P, 2P or more… 
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Understand the platform and its features: NUMA

CPU CPUCPU

Disk  NIC Disk  NIC

→Impacts memory bandwidth and latency

• NUMA & Memory interleaving

18
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Understand the platform and its features: SMT / HT

→Significantly impacts CPU utilization % and Performance analysis! 

• AMD® EPYC Simultaneous Multithreading (SMT)

• Intel® Hyper-Threading Technology (HT)

• IBM® Power9 Simultaneous Multithreading (SMT) 

• More replication of resources

19
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CPU utilization % examples … next level detail…

→Just knowing 

CPU % utilization 

may not be 

sufficient! 

System Total 

CPU %

User 

vs. Sys

A 40% 35% User

5% Sys

B 40% 25% User

15% Sys

Syste

m

Total 

CPU %

User 

vs. Sys

Effective

Frequency

A 40% 35% User

5% Sys

3.50 GHz

B 40% 35% User

5% Sys

2.8 GHz

System Total 

CPU %

User 

vs. Sys

Effective

Frequency

Scheduling

A 40% 35% User

5% Sys

3.50 GHz

B 40% 35% User

5% Sys

3.50 GHz
Across cores

Cores + SMT threads

20
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CPU utilization % not linear when SMT is enabled…

→In production, it is critical for auto load balancer policies! 

0%                            50%                              100%

16 vCPUs SMT Enabled

16 vCPUs (with SMT Disabled)

Headroom

Headroom

Auto load balancer 

policy @50% CPU

T
h

ro
u

g
h

p
u

t

Cores 0    1    2   3    4   5   6   7   8    9  10  11 12 13  14 15
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Performance analysis with SMT / HT…

→Special attention when mixing IPC from SMT ON and OFF configs! 

SMT OFF SMT ON

Total Instruction retired / sec 96 x 109 110 x 109

Total CLKs / sec
48 x 109

96 x 109
SMT OFF 16C/16T vCPUs x 3.0 GHz

SMT ON   16C/32T vCPUs x 3.0 GHz

Total Ops / sec 1000 1200 20% SMT Uplift

IPC (Instructions / CLK) 2.00 1.15

CPI (CLKs / Instruction) 0.50 0.87

• Fundamentals of Performance Analysis
Example:

22
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STEP 3 Understand the scaling of the deployed application…

→Hypervisor may schedule VMs using different policies! 

Within single L3                            Align to L3s                                Across L3 first

23
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Understand the scaling bottlenecks…

CPU 0        CPU 1

L2 I+D

I/O

Bandwidth

DRAM

Bandwidth

DRAM

24
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Understand the scaling of the deployed application…

→Common resource L3 

as first point of bottleneck!

CPU 0        CPU 1

L2 I+D

I/O

Bandwidth

DRAM

25
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STEP 3 Understand the scaling of the deployed application…

→Common resource 

L3 as first point of 

bottleneck!

CPU 0        CPU 1

L2 I+D

Bandwidth

DRAM

I/O

→Common resource 

DRAM Bandwidth as 

next point of bottleneck!

→Common resource 

I/O Bandwidth 

could be bottleneck too!

26
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STEP 3 Understand the scaling of the deployed application…

CPU 0        CPU 1

L2 I+D

Bandwidth

DRAM

I/O

Cores

L3 bottleneck@

None

 ~4 cores

 ~2 cores

27
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STEP 3 Understand the scaling of the deployed application…

CPU 0        CPU 1

L2 I+D

Bandwidth

DRAM

I/O

Cores

CPU 0 CPU 1

Bottleneck analysis

No memory bandwidth issue

Memory bandwidth after App 

across two L3s and 

CPU 1 delivers gain again 

Likely cross socket traffic or I/O 

L3 bottleneck@

None

~4 cores

~2 cores

28
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STEP 4 How to validate these observations…

→Tools, data collection, post processing and analysis

29
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Typical production deployments … asks…

• In-depth optimization

• Profiling tools with architecture specific analysis 

• Optimal sizing of VMs

• High level characterization of the application + TCO analysis 

• Large scale production deployments telemetry and analysis…

30
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Large scale deployments … proposed architecture…

→Collaboration areas between research and industry…

VM
VM

VM
VM

VM
VM

VM
VM

VM

VM
VM

VM
VM

VM
VM

VM
VM

VM
VM

VM
VM

VM
VM

VM
VM

VM

App Level

Telemetry

Logging

System 

Level

Tools

Continuous

On demand

Logging

Logging

Postprocessing:

• App Level

• System Level

Analysis:

• App Level

• System Level

Recommendation:

• App Level

• System Level

31
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Continuous data collection…

• vmstat 

• Effective Frequency

• Etc.

32
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Analysis … vmstat or similar…

• Mostly rule based analysis

vmstat:

logs

VM config: 
SMT ON/OFF, etc.

High level:

App char

Analysis:
Sys CPU %,

I/O wait CPU %,

User CPU % → Throughput

Context Switch Rate

Interrupts Rate

Memory Swap 

I/O within expected limits,

Memory utilization for TCO

Total CPU% for TCO

Recommendations:
Alerts

Input to config & TCO

33
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Effective Frequency…

• Due to core level power management and total power capping, 

measuring effective frequency of the cores associated to the VM 

is very important to determine performance!

34
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On-demand data collection … system level tools…

• PerfSpect

• ProcessWatch

35
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PerfSpect…

• pip3 install -r requirements.txt

• make

• cd build && ./perf-collect -t 60 (sets 
duration of 60s)

• ./perf-collect --socket –t 60 (sets duration 
of 60s and collects Socket level information)

• ./perf-collect --cpu -a $PWD/sample.sh 
(option --cpu to collect per cpu data and 
disables uncore events, -a for application to 
run with perf-collect and ends after workload 
completion)

• ./perf-collect -m 80 --cpu -t 60 (option -m 
is the mux interval)

• ./perf-collect -p 5041 -t 100 (option -p to 
collect data for a given PID process)

• ./perf-postprocess (generates reports in 
readable csv format and HTML file to view the 
graphical plots)

36
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ProcessWatch…

• Showcase

37

Optimatist

Analysis…

• Mostly rule based analysis

38
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Analysis … using architecture specific counters…

• Mostly rule based but following … performance methodology…

PerfSpect:

logs

VM config: 
SMT ON/OFF, etc.

High level:

App char

Analysis:

Performance Methodology

Recommendations:
Alerts

Input to config & TCO

39
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Performance methodology  … rule + heuristic…

Performance = =

=

Performance =

Ops

CLKs
Instructions

CLKs
X

Ops

Instructions

Ops / sec

Instructions / sec
X

Instructions / sec

CLKs / sec 

X
1

Instructions / sec

Ops / sec

Architecture

(branch, cache, 

memory, etc.)

Software

(compilation, 

libraries, etc.)

IPC
better

better

40
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PerfSpect logging data…

• Ops per sec ( App Telemetry)

• Instruction / sec 

• CLKs / sec

• Calculate IPC (Instructions, CLKs)

• Compare Architecture Counters

• Next in-depth: Branches, caches, memory bandwidth and latency

• Calculate Instructions / Ops (Instructions, Ops / sec)

• Compare for SW stack changes

41
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Challenges…

• Many cloud deployments only allow core level PMCs 

• Only core level PMCs available within a VM or container 

• Manually it is not possible to analyze data collected at scale

• Performance analysis is rule based + heuristic + changes with 

deployment and load etc. 

→Very important for overall TCO to develop analysis and

recommendation using (App telemetry + System tools data)

42
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Part 2: Performance analysis 
in the industry, methodology 
and case studies

Optimatist

A workload that has been running fine for a few cores may not 

do well with dozens or hundreds of cores.

Core Scaling Analysis:

• Run a workload from a few cores to dozens or even 

hundreds of cores

• If performance doesn’t scale well, identify the bottlenecks.

Workload in the many core era
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Case study: Bottleneck analysis with many cores

A library that provides an embeddable, 

persistent key-value store for fast storage.

RocksDB is developed and maintained by 

Facebook Database Engineering Team. It is 

built on earlier work on LevelDB.

RocksDB

LevelDB is a fast key-value storage library 

written at Google that provides an ordered 

mapping from string keys to string values. 

Authors: Sanjay Ghemawat 

(sanjay@google.com) and Jeff Dean 

(jeff@google.com)

LevelDB

https://github.com/google/leveldb

https://github.com/facebook/rocksdb

Optimatist46

Case study: Bottleneck analysis with many cores

RocksDB

LevelDB

https://github.com/google/leveldb

https://github.com/facebook/rocksdb

db_bench is used to evaluate the 

performance of LevelDB and is part of 

the LevelDB project.

Facebook conducted secondary 

development based on LevelDB's
db_bench to evaluate the 

performance of RocksDB. 

They also built benchmark.sh on 

top of it to provide recommended 

running methods.

mailto:sanjay@google.com
mailto:jeff@google.com
https://github.com/google/leveldb
https://github.com/facebook/rocksdb
https://github.com/google/leveldb
https://github.com/facebook/rocksdb
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• Apache Spark

• Apache Flink

• Apache Kafka

• Apache Doris

• Apache Kvrocks

• Alluxio

• ByteDance ByteGraph

• Microsoft Bing search engine

• Netflix

• Uber

• Airbnb

• Tencent PaxosStore (for WeChat)

• Yahoo 

• LinkedIn

• PingCAP, TiDB, TiKV

• Snowflake 

47

Case study: Bottleneck analysis in multithreaded scenarios 

https://github.com/facebook/rocksdb/blob/main/USERS.md

Some of RocksDB’s users:

Optimatist

benchmark.sh and db_bench

have been used as the benchmark 

for performance testing in many 

versions of RocksDB.

48

Case study: Bottleneck analysis in multithreaded scenarios 

https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks

https://github.com/facebook/rocksdb/blob/main/USERS.md
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
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• RocksDB: version 9.2.0

• CPU: 2 * Intel(R) Xeon(R) Platinum 8383C CPU @ 2.70GHz

• HyperThreading ON

• 40 cores per socket

• 160 hardware threads

• Memory: 512 GB

• OS: Ubuntu 22.04 5.15.0-102-generic

49

Case study: Bottleneck analysis in multithreaded scenarios 

# the parameters of benchmark.sh 

export DB_DIR=./db

export WAL_DIR=./wal

export NUM_KEYS=900000000

export CACHE_SIZE=6442450944

export DURATION=300

export NUM_THREADS=1 # only this changed in the 

following different experiments

./tools/benchmark.sh randomread

Random Read: Measure performance to randomly read existing keys. Uniform Distribution. Mason rotation method.

Optimatist50

Case study: Bottleneck analysis in multithreaded scenarios 
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Case study: Bottleneck analysis in multithreaded scenarios 

# cmdline : /usr/lib/linux-tools-5.15.0-100/perf record -e {cycles,instructions}:S 

-a -F 97 /usr/bin/taskset -c 140 ./benchmark.sh readrandom 

1 thread, data collected by perf-record, parsed by perf-report

Optimatist52

Case study: Bottleneck analysis in multithreaded scenarios 

# cmdline : /usr/lib/linux-tools-5.15.0-100/perf record -e {cycles,instructions}:S 

-a -F 97 ./benchmark.sh readrandom 

160 threads, data collected by perf-record, parsed by perf-report
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Case study: Bottleneck analysis in multithreaded scenarios 

We configured CPU affinity to distribute all the threads

to different physical cores of the same processor, and

increased the number of threads from 1 to 40.

Optimatist

Case study: Bottleneck analysis in multithreaded scenarios 

54

Throughput Latency

Different physical cores on the same processor



28

Optimatist55

Case study: Bottleneck analysis in multithreaded scenarios 

Global Variable with Mutex Lock

The function FinishedOps is called 

once after each operation is completed.

Optimatist

Before modification

56

Case study: Bottleneck analysis in multithreaded scenarios 

After modification 323,795,384 vs 37,083,372
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Case study: Bottleneck analysis in multithreaded scenarios 

57

Before modification After modification

Throughput

Optimatist

Case study: Bottleneck analysis in multithreaded scenarios  

58

Before modification After modification

Latency
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https://github.com/facebook/rocksdb/issues/12594

https://groups.google.com/g/rocksdb/c/ORtpFcXMf8w

Problem agreed last month. Will submit a PR to fix it.

Analysis shared on GitHub and Google Group

Optimatist

Performance Matters!

https://www.alizila.com/alibabas-11-11-outstrips-biggest-us-shopping-holidays-in-2019/

https://github.com/facebook/rocksdb/issues/12594
https://groups.google.com/g/rocksdb/c/ORtpFcXMf8w
https://www.alizila.com/alibabas-11-11-outstrips-biggest-us-shopping-holidays-in-2019/
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To save 1000 servers

Servers Needed 

Performance 

Improvement (%)

Examples

10,000 10 Workload Characterization

Iron Law

100,000 1 Software Configuration at Scale

Hardware Configuration at Scale

Optimatist

SPEED

Estimation
Measurements & 

Sampling

Evaluation

• Software & Hardware 
Changes 

Decision

• Actions 

System Performance
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Optimatist

• Google-wide Profiling (GWP)

• CPI2

• Performance Scaling in many cores

• Resource Usage Effectiveness (RUE)

• System Performance Estimation, Evaluation 

and Decision (SPEED)

Performance Analysis at Scale
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GWP

Gang Ren, Google-wide Profiling @ IEEE Micro 2010

Optimatist

GWP Optimization

Gang Ren, Google-wide Profiling @ IEEE Micro 2010
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CPI2

In one study, CPI correlates 

well with throughput

If that is true for your data, 

then the next slide may 

help you

Xiao Zhang, et al. CPI2 @ EuroSys 2013

Optimatist

CPI Distribution

Ignore small samples (e.g., less than 25% utilization)

Select outlier detection based on a criteria that works for your data (e.g., 3 times in 5 minutes)

CPI2

Xiao Zhang, et al. CPI2 @ EuroSys 2013
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CPI from SPECjbb2005 experiments

Number of logical 

CPU's 64

Frequency /GHz 2.5(Fixed)

Throughput 

/Mops

CPU 

Util. /% Cycles /s Insts /s CPI

32 cores (1 thread 

each) 1.199 50.1680,256,000,000 75,800,000,000 1.06

32 cores (both 

threads per core) 1.235 98.59157,744,000,000 78,400,000,000 2.01

Optimatist

Performance Estimation at Scale

RUE (Resource Usage Effectiveness)

𝑹𝑼𝑬 =
𝑹𝒆𝒔𝒐𝒖𝒓𝒄𝒆 𝑼𝒔𝒂𝒈𝒆

𝑾𝒐𝒓𝒌 𝑫𝒐𝒏𝒆

Resource usage: CPU, Memory, Storage, Network

Work Done: Queries, Tasks

Smaller is better

Workload 

Specific

System Tools
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Performance Evaluation at Scale

Speedup from configuration 1 to 2

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 =
𝑹𝑼𝑬𝟏
𝑹𝑼𝑬𝟐

RUE1 is the RUE of configuration 1

RUE2 is the RUE of configuration 2

Bigger is better

Optimatist

Performance Data Collection in the Large
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The law of large numbers

a theorem that describes the result of performing the 

same experiment a large number of times. According 

to the law, the average of the results obtained from a 

large number of trials should be close to the expected 

value, and will tend to become closer as more trials 

are performed.

https://en.wikipedia.org/wiki/Law_of_large_numbers

Optimatist

Example: Testing a new feature

To reduce the cost of testing

1% of instances of an application ran on the new 

config (config 2), 99% of instances ran on the old 

config (config 1)

No change in deployments, each app might run on 

the new config or the old config

We still have a large number of samples, even with 

1% of the instances
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Performance Evaluation at Scale

App 3 App 4

Machine 4

Machine 2

App 2 App 3

Machine 3

App 1 App 2

App 1 App 2 App 3 App 4

Machine 1

App 1 App 3

Machine 4

App 1 App 2 App 3 App 4

App 2

App 3

App 1 App 4

App 1

Machine 3

Machine 2

Machine 1

App 3App 2

App 3

RUE1

RUE2

RUE1

Optimatist

Big Data

Config 1 Config 2
Speedup

Proportion of App 
Instances RUE1

Proportion of App 
Instances RUE2

App Total 99.00% 885 1.00% 815 1.09

Looks really promising, let’s change ??

More samples needed?

More analysis needed?
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Big Data Paradox

Config 1 Config 2
Speedup

Proportion of App 
Instances RUE1

Proportion of App 
Instances RUE2

App Total 99.00% 885 1.00% 815 1.09

App Group 1 50.10% 1289 0.30% 1484 0.87

App Group 2 31.50% 428 0.40% 434 0.99

App Group 3 17.40% 550 0.30% 655 0.84

Optimatist

A trend appears in several different groups of data but 

disappears or reverses when these groups are 

combined

Simpson’s Paradox

https://plato.stanford.edu/entries/paradox-simpson/

https://plato.stanford.edu/entries/paradox-simpson/
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Simpson’s Paradox

Resource

Utilization

Work Done

Feature on

Feature off

Overall performance increases

Is that real?

Optimatist

• G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus and R. Hundt, "Google-Wide Profiling: A Continuous 

Profiling Infrastructure for Data Centers," in IEEE Micro, vol. 30, no. 4, pp. 65-79, July-Aug. 2010, 

doi: 10.1109/MM.2010.68.

• Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John Wilkes. 2013. 

CPI2: CPU performance isolation for shared compute clusters. In Proceedings of the 8th ACM 

European Conference on Computer Systems (EuroSys '13). Association for Computing Machinery, 

New York, NY, USA, 379–391. https://doi.org/10.1145/2465351.2465388

• Intel gProfiler

• https://www.intel.com/content/www/us/en/newsroom/news/intel-releases-continuous-profiler-for-cpu-

performance.html#gs.785y33

• Facebook RocksDB

• https://github.com/facebook/rocksdb

• Simpson’s Paradox

• https://github.com/ninoch/Trend-Simpsons-Paradox

• https://github.com/CamDavidsonPilon/simpsons-paradox

• https://github.com/ijmbarr/simpsons-paradox

• https://github.com/ehart-altair/SimpsonsParadox

References
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https://www.intel.com/content/www/us/en/newsroom/news/intel-releases-continuous-profiler-for-cpu-performance.html#gs.785y33
https://www.intel.com/content/www/us/en/newsroom/news/intel-releases-continuous-profiler-for-cpu-performance.html#gs.785y33
https://github.com/facebook/rocksdb
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☺ THANK YOU ☺

https://xkcd.com/1737/
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