Software Performance Analysis —

Industry Perspectives

Kingsum Chow, Xinyu Jiang, Chengdong Li, Anil Rajput

@ ,’Iﬁj’)’.? () Optimatist AMDZ1

I Who are we?

Kingsum Chow, Professor / School of Software Technology, Zhejiang University
Xinyu Jiang, Postgraduate Student / School of Software Technology, Zhejiang University
Chengdong Li, Founder & CEO / Optimatist

Anil Rajput, AMD Fellow / Datacenter Ecosystems and Application Engineering, also Chair, Java
Committee, SPEC

*All third-party product, company names and logos are trademarks or registered® trademarks and remain the property of their respective holders.
Use of them does not imply any affiliation with or endorsement by them.

zzzzzzzzzzzzzzzzzz

Troerea

+ Part 1: Performance perspective with focus on production deployments

« Part 2: Performance analysis in the industry, methodology and case studies

;’ﬁ/ ’J'g “‘ Optimatist AMDZ1

! \?'\\\\ AT §

Part 1: Performance
perspective with focus on
production deployments

I

+ Lifein 2010 vs. Now
» Performance Monitoring Universe
* Production Deployments Asks

» Detour: essential STEPs of Performance Analysis
* Profiling
» Architecture features intertwined with Analysis

» Large Scale Deployments
* App Telemetry
* Tools, data collection, methodology and Analysis

* Challenges

I Life used to be simple...

Devices Memory
PCle etc. | Controller

[NIC, DisksJ [Memory]

- Single or Dual Cores

- Fixed Frequency

 Uniform Memory

« Simple /0O

- Baremetal OSand performance analysis ©

\\\\\\\\\\\\\\\\\\

I Life used to be simple... Now...

UL IC L IC L IR)

Cores Cores Cores Cores Cores Cores

[Caches Caches | Caches| Caches | Caches Caches}

Devices Memory
PCle etc. Controller

Devices : M M
[NIC, Disks} [Memory] [Memory J [Memory J [POlo, etc_}[NIC, D.sks][lemory] [lemory]

+ vCPUs > 512

* Dual Cores - Frequency/Boost

 Fixed Frequency - Per core power control

+ Uniform Memory * NUMA

« Simple I/O - Multi-nodes to Microservices

. Baremetal OS - Cloud VMs, Hypervisors, Containers

- System and Application telemetry

« Open-source and proprietary tools

« Al based scheduling and problem analysis

7 @ ,’ﬂi)’%? () Optimatist AMDZ1

....and performance analysis ©

I Performance monitoring universe...

‘ A - Application Telemetry

‘ Apps

. Wi logs
‘ VMs ‘
- OS monitoring/tracing
(O]
LLIL L)L L)L) L - System level

+ Process Specific/Functional level
+ Custom tools

« PMCs/PMUs validation/testing

+ New PMCs/PMUs research

ssssssssssssssssss

I Performance monitoring universe ... this tutorial focus...

‘ A - Application Telemetry

Apps
. VM logs
‘ VMs
l T ‘-- ~~"OS moniteringitracing___ Latest
(rmamammmamEr) sysemien "y Pproduction
N o e [» Process Specific/Functional levet” deployment
-—:"_ _________ . Qﬂls— _______ -
-f - -stomt focus
« PMCs/PMUs validation/testing
« New PMCs/PMUs research

I What typical production deployments requesting...

* Few important counters ... all the time at right granularity

* On demand or based on some alerts ... detailed counters capture
=>All above ... using open-source tools (Linux Perf)
=>» Automation to correlate ... above with application telemetry!

=>»Should lead to ... better configurations, optimizations and TCO

I What typical production deployments requesting...

=>In 1-2 years... generate enough training data set for LLMs ©
Short term: Apply RAG, create Agents
Long Term: AlPerfEngineer!

m;n},? () Optimatist AMDZ1

I What typical production deployments requesting...

* Yes, we have a proposed methodology which is not perfect,
but pretty good!

« |t starts with basic fundamentals...

vvvvvvvvvvvvvvvvvv

I Before executing the application ... ensure...

+ Platform Configuration
» Log the config details using many tools

» Develop automatic compare and alerts
* CPU models, Memory DIMMs, Disks, etc.

» System Health check

+ Collect quick basic performance evaluation
* Memory bandwidth and latency
+ 1/O perf, etc.

I STEP 1 of any performance analysis ... understand...

* The high-level characteristics of the application

CPU

Memory (used)

J il VR Sy

Execution phases

vvvvvvvvvvvvvvvvvv

I How to profile an application...

* Many tools available

* Basic vmstat

» Collect and view in histogram Delay in
collection

* Check if running at Host
* Host level or

" VMlevel ?|~:| .}

C

I How to profile an application ... vmstat

° VmStat https://access.redhat.com/solutions/1160343

° Waltlng th reads [user@fedorad ~]§ vmstat 1 5

r b swpd free buff cache si so bi boe in s us sy id wa st
° Memory use 3 e @ 44712 110052 623696 © @ 3@ 28 217 88813 383 1 @

o o 9 4448 110052 623096 @ © @ 83144631 465 0 @
° I/O 2 o ® 44524 110952 623096 © @ © @ 84 87211 287 @ ©

o o ® 44516 110052 623096 © @ © B 143142918 577 8 @

2 o @ 44524 110952 623096 @ @ © @ 66 43114 185 @ @
o Interru ptS [user@fedorad ~]$

» Context Switch
* CPU %: user, system, I/0O wait, and idle

i} @ e Y {» optimatist AMDI1

ssssssssssssssssss

https://access.redhat.com/solutions/1160343

I STEP 2 ... understand the platform and its features

* 1P, 2P or more...

Blade
Servers

1P

Disk NIC

f”/"%g () Optimatist AMDZ1

I Understand the platform and its features: NUMA

* NUMA & Memory interleaving
=] = = =

Disk NIC

1 |

HUBA Node © nunaR ioe 1

HHHREHL

NUMANGOEO NUMANGGED NUMANOGEZ NUMANoSE3

Disk NIC Disk NIC il Bt Bl Bl

ssssssssssssssssss

I Understand the platform and its features: SMT / HT

- AMD® EPYC™ Simultaneous Multithreading (SMT)
* Intel® Hyper-Threading Technology (HT)

* IBM® Power9™ Simultaneous Multithreading (SMT)

-> Significantly impacts CPU utilization % and Performance analysis!

I CPU utilization % examples ... next level detail...

System | Total User Syste Total User Effective
CPU % | vs. Sys CPU % | vs. Sys Frequency

40% 35% User 40% 35% User 3.50 GHz
5% Sys 5% Sys
B 40% 25% User B 40% 35% User 2.8 GHz .
15% Sys 5% Sys ->Just knowing

CPU 9% utilization

System | Total User Effective may nOt be
CPU % | vs. Sys Frequency SUﬁiCient'
A

Cores + SMT

40% gfz%sl;sser 3.50 GHz |:I:| |:|:| |:|:| I_I_”:[”:["_U

Across cores

B 40% 5?/:/osl;sser 3.50 GHz m |I| mmmm mmmm

20
\\\\\\\\\\\\\\\\\\

I CPU utilization % not linear when SMT is enabled...

16 vCPUs (with SMT Disabled)

A Headroom m ﬂ E] E]

-
=} R _ -
s PrAieTi i }16 VCPUs SMT Enabled
(=] M- :
Cores 112 B S5 |6 F
: J Heagroom << QP AP DADR
= 7
o g
s }
v 4 |
j/ Auto load balancer
Rsd i policy @50% CPU
- !
|
0% 50% 100%

—In production, it is critical for auto load balancer policies!

21

I Performance analysis with SMT / HT...

* Fundamentals of Performance Analysis
Example:

| ISMTOFF[sMTON | |

Total Instruction retired / sec 96 x 102 110 x 10°

Total CLKs / sec 48 x 10° SMT OFF 16C/16T vCPUs x 3.0 GHz
96 x10° SMT ON 16C/32T vCPUs x 3.0 GHz
Total Ops / sec 1000 1200 20% SMT Uplift
IPC (Instructions / CLK) 2.00 1.15
CPI (CLKs / Instruction) 0.50 0.87

-> Special attention when mixing IPC from SMT ON and OFF configs!

ssssssssssssssssss

22

11

I STEP 3 Understand the scaling of the deployed application...

Within single L3 Align to L3s Across L3 first

=]I
[
=

—
oE

—
(]3]

J
J
LI
== |
LI
=282 |

J
]
J
]
]
J
J
J

J{

—>Hypervisor may schedule VMs using different policies! &) %% () optimatist AMDI

I Understand the scaling bottlenecks...

CPUO CPU 1

B EHE EEEEEEEE EEEEEEEE EEEEEEEE €z EEEHEEEE EEEEEEEE CEEENSEE EEEEEEEE
\

- ——

,Bandwidth W Q '\D/ ,“Bandwidth
lllllllllhlllllllllllilllllllll ! \ "ﬂl""lh\'""""ln\%"""
1 J 7/

‘DRAM _/

-~_- \

\\\\\

N A4
110

\\\\\\\\\\\\\\\\\\

12

I Understand the scaling of the deployed application...

CPUO CPU1

L3 Cache L3 Cache L3 Cache

L3 Cache L3 Cache L3 Cache L3 Cache

llllllllllhlllllllllllJl"lllll

e S

1 Bandwidth
llllﬂﬂhl"ﬂMllJlllllllll
DRAM
110

E

> Common resource L3
as first point of bottleneck!

2 @ ,’ﬂi)’%? () Optimatist AMDZ\

I STEP 3 Understand the scaling of the deployed application...

CPUO CPU 1

B common resource

T>c
L3 as first point of ommon resource

I/0 Bandwidth
I
bottleneck! > Common resource could be bottleneck too!

DRAM Bandwidth as
next point of bottleneck!

) e Y {» optimatist AMDI1

\
\
! 110 So
\
\
\

ssssssssssssssssss

I STEP 3 Understand the scaling of the deployed application...

CPUO CPU1

13Crcle g L3 Cache L3 Cache L3 Cache L3 Cache m
T — —_;-)-_

| e S il e,

L3 bottleneck@ 1/O
L3 as bottleneck

~*=fapl <None
—a—App2
-3 & ~4 cores
& ~2 cores
0 1 H 3 4 5 6 7 8

2z @ ,’ﬂi)’%? () Optimatist AMDZ1

CPUO CPU 1

L3 Crcle 13 Ciclie L3 Za~he L3 Cache

|
! N N\
I DRAM N N
: N N Bottl k lysi

L3 bottleneck@ S <« /o A . ottleneck analysis
- 13 as bottleneck None
2 —e—hppl Scaling across L3 No memory bandwidth issue
e ~4 cores ——hep2 Memory bandwidth after App

o cores —o—App3 <across two L3s and

z CPU 1 delivers gain again
o 1z 3 & s & 1 s D A e Likely cross socket traffic or I/O
Cores ————
0 1 2 3 4 5 6 7 8

. CcPUO CPU1 y iR Y ¥ optimatist AMDZI1

ssssssssssssssssss

I STEP 4 How to validate these observations...

= Bottleneck analysis

bottleneck
ahept L3 as bottleneck on
B - No memory bandwidth issue
e ~4 cores Memory bandwidth after App

~2 cores ‘H"Q-I'TE;.‘.‘;:S‘::_{\;{(B-‘ESS and

o "CPU 1 delivers: gain again
o 1 1 31 & s & 1 8 Likely cross socket traffic or I/O
Cores ——»
0 1 2 3 4 5 13 7 8
cPUD cPU1
->Tools, data collection, post processing and analysis
» f”/"%g () Optimatist AMDZ1

I Typical production deployments ... asks...

* In-depth optimization
* Profiling tools with architecture specific analysis

* Optimal sizing of VMs
* High level characterization of the application + TCO analysis

* Large scale production deployments telemetry and analysis...

) @ e Y {» optimatist AMDI1

ssssssssssssssssss

15

I Large scale deployments ... proposed architecture...

» Logging
—— Logging ~
I 1 Level
On demand _ | Tools
» Logging k

: App Level
4}{ Telemetry }

Continuous

Postprocessing:
App Level
System Level

Analysis:
App Level
System Level

Recommendation
App Level
System Level

—>Collaboration areas between research and industry...
31 ,’ﬂi)’%? ()Optimatist AMDD

I Continuous data collection...

* vmstat
- Effective Frequency

» Etc.

) e Y {» optimatist AMDI1

ssssssssssssssssss

I Analysis ... vmstat or similar...

* Mostly rule based analysis

vmstat:
logs

VM config:
SMT ON/OFF, etc.

Analysis:
Sys CPU %,

I/0 wait CPU %,
User CPU % <-> Throughput
Context Switch Rate
Interrupts Rate

Memory Swap

1/0O within expected limits,
Memory utilization for TCO
Total CPU% for TCO

Recommendations:
Alerts
Input to config & TCO

—

High level:
App char

33

I Effective Frequency...

* Due to core level power management and total power capping,

measuring effective frequency of the cores associated to the VM
is very important to determine performance!

17

On-demand data collection ... system level tools...

* PerfSpect

* ProcessWatch

ik) optimatist AMDZI1

-

PerfSpect...

¢« pip3 install -r requirements.txt

~ © make
S * cd build && ./perf-collect -t 60 (sets

duration of 60s)

Pressure Stal Information (PS) « ./perf-collect --socket -t 60 (sets duration
o of 60s and collects Socket level information)

« ./perf-collect --cpu -a $PWD/sample.sh
(option --cpu to collect per cpu data and
disables uncore events, -a for application to
run with perf-collect and ends after workload
e o completion)

« ./perf-collect -m 80 --cpu -t 60 (option -m
N A NN is the mux interval)

¢ ./perf-collect -p 5041 -t 100 (option -p to

AL L\,/\/ e NS collect data for a given PID process)
+ ./perf-postprocess (generates reports in
A ———— A readable csv format and HTML file to view the

graphical plots)

Remote Core Bandwidth

ink Bandwidth

S /”/’J' § {» optimatist AMDI1

18

I ProcessWatch...

» Showcase

a7 @ }ﬂi)’%? () Optimatist AMDZ\

oy

* Mostly rule based analysis

) e Y {» optimatist AMDI1

ssssssssssssssssss

19

I Analysis ... using architecture specific counters...

* Mostly rule based but following ... performance methodology...

PerfSpect:
logs

VM config:
SMT ON/OFF, etc.

Analysis:

Recommendations:
Alerts

Performance Methodology, Input to config & TCO

High level:
App char

39 m;,‘}‘ g () Optimatist AMDZ\

I Performance methodology ... rule + heuristic...

- Ops _ __Ops Instructions
Performance CLKs Instructions X CLKs
_ Ops / sec X Instructions / sec
— Instructions / sec CLKs / sec
1
Performance = X IPC |,
Instructions / sec || .iior eter
Ops / sec
\ Y J o\ . J
Software Architecture
(compilation, (branch, cache,
libraries, etc.) memory, etc.)

) @ e Y {» optimatist AMDI1

vvvvvvvvvvvvvvvvvv

20

I PerfSpect logging data...

S —
Performance = Instructions / sec lben)::r IPe Ibetter
Ops / sec l
! \ Y J
* Ops per sec (App Telemetry) Softuare Architecture
. ilation, (branch, cache,
* Instruction / sec ﬁct,?;%st:;!) memory, etc.)

* CLKs/sec

« Calculate IPC (Instructions, CLKs)
* Compare Architecture Counters
* Next in-depth: Branches, caches, memory bandwidth and latency

Calculate Instructions / Ops (Instructions, Ops / sec)
» Compare for SW stack changes

I Challenges...

* Many cloud deployments only allow core level PMCs
* Only core level PMCs available within a VM or container

* Manually it is not possible to analyze data collected at scale

« Performance analysis is rule based + heuristic + changes with
deployment and load etc.

->Very important for overall TCO to develop analysis and
recommendation using (App telemetry + System tools data)

zzzzzzzzzzzzzzzzzz

21

R AL TR

Part 2: Performance analysis
in the industry, methodology
and case studies

I Workload in the many core era

A workload that has been running fine for a few cores may not
do well with dozens or hundreds of cores.

Core Scaling Analysis:

* Run a workload from a few cores to dozens or even
hundreds of cores

« If performance doesn’t scale well, identify the bottlenecks.

}:”N/ ’*}'-g {» optimatist AMDI1

22

I Case study: Bottleneck analysis with many cores

LevelDB

RocksDB

https://github.com/google/leveldb
https://github.com/facebook/rocksdb

a5

I Case study: Bottleneck analysis with many cores

LevelDB

RocksDB

https://github.com/google/leveldb
https://github.com/facebook/rocksdb

a6

LevelDB is a fast key-value storage library
written at Google that provides an ordered
mapping from string keys to string values.
Authors: Sanjay Ghemawat
(sanjay@google.com) and Jeff Dean

(jeff@google.com)

A library that provides an embeddable,
persistent key-value store for fast storage.

RocksDB is developed and maintained by
Facebook Database Engineering Team. It is
built on earlier work on LevelDB.

db_bench is used to evaluate the
performance of LevelDB and is part of
the LevelDB project.

Facebook conducted secondary
development based on LevelDB's
db_bench to evaluate the

performance of RocksDB.
They also built benchmark.sh on

top of it to provide recommended
running methods.

vvvvvvvvvvvvvvvvvv

23

mailto:sanjay@google.com
mailto:jeff@google.com
https://github.com/google/leveldb
https://github.com/facebook/rocksdb
https://github.com/google/leveldb
https://github.com/facebook/rocksdb

I Case study: Bottleneck analysis in multithreaded scenarios

Some of RocksDB’s users:

* Apache Spark » Uber

» Apache Flink » Airbnb

» Apache Kafka * Tencent PaxosStore (for WeChat)
» Apache Doris * Yahoo

» Apache Kvrocks * LinkedIn

* Alluxio * PingCAP, TiDB, TiKV

» ByteDance ByteGraph » Snowflake

» Microsoft Bing search engine

* Netflix

https://github.com/facebook/rocksdb/blob/main/USERS.md
@ @ ,’ﬂi)’%? () Optimatist AMDZ1

I Case study: Bottleneck analysis in multithreaded scenarios

& C A hupsygi fwiki/ Benchmarks

Test 2. Random Read (benchmark.sh readrandom)

NUM_KEYS=500000000 CACHE_SIZE=6442450944 DURATION=5400 benchmark.sh readrandom

Measure performance to randomly read existing keys. The database after bulkload was used as the starting point.

Version Opts ops/sec mb/sec usec/op pS0 P75 p99 p99s poa.g9

722 None 136915 7 4674 | 6155 7728 1270 1801 2840

722 DIO 189236 419 3382 4196 5391 1022 1693 2297 benchmark . Sh and db bench
711 None 145430 368 | 4399 5997 | 7537 1252 1809 2813 —

711 DIO 189242 479 3382 4190 5391 1037 1696 2294 have been used as the benCh ma rk
703 None 145540 368 | 4397 5998 7533 12517 1803 | 2803 f rf t t .

703 DIO 189243 479 3382 4192 5392 1029 1691 2246 or pe ormance tes Ing In many
6291 None 145577 369 4396 6063 7510 1204 1292 2091 Versions Of ROCkSDB .

6291 DIO 189243 479 3382 4300 5409 854 969 1291

6290 None 145530 369 4396 6062 7510 1204 1292 1936

6290 DIO 189241 479 3382 4300 5408 854 932 1289

6280 None 146980 7.2 4354 | 6043 7489 1195 1291 1984

6280 DI0 189232 479 3382 4300 5409 854 991 1293

6270 None 146921 72 4356 6044 7488 1194 1291 1980

6270 DIO 189250 479 3382 | 4301 5408 854 902 1287

6260 None 128341 325 4987 | 6396 8057 1272 1298 2156

6260 DIO 189244 479 3382 | 4301 5408 854 894 1287

6250 None 128517 325 4380 6390 8046 1272 1298 2220

“ https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks '”/’Jg ¥ optimatist AMDZ1

https://github.com/facebook/rocksdb/blob/main/USERS.md
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks

I Case study: Bottleneck analysis in multithreaded scenarios

Random Read: Measure performance to randomly read existing keys. Uniform Distribution. Mason rotation method.

RocksDB: version 9.2.0
CPU: 2 * Intel(R) Xeon(R) Platinum 8383C CPU @ 2.70GHz
* HyperThreading ON

the parameters of benchmark.sh

* 40 cores per socket export DB DIR=./db

+ 160 hardware threads export WAL DIR=./wal
export NUM KEYS=900000000
* Memory: 512 GB export CACHE SIZE=6442450944

export DURATION=300
export NUM THREADS=1 # only this changed in the
following different experiments

OS: Ubuntu 22.04 5.15.0-102-generic

./tools/benchmark.sh randomread

.

.§ () Optimatist AMDZ1

I Case study: Bottleneck analysis in multithreaded scenarios

167 Comparison of RocksDB Random Read Throughput: 1 Thread vs 160 Threads (Original)
37083372.0

5033342.0

Threads

Threads Instructions Transactions Path Len Cycles CPl MicroSec Ops Ops Sec Total Time(s) CPU Util(%)
1 3129398329928 1510002999 2072.445109 1136230674488 0.363083 0.199 50333420 300.000 99.710000
160 22625805888251 11125908840 2033.614172 171717420118090 7.589450 4314 37083372.0 300.024 99.462063

) @ e Y {» optimatist AMDI1

ssssssssssssssssss

I Case study: Bottleneck analysis in multithreaded scenarios

39 8 Overhead Command Shared Object

Symbol 1 thread, data collected by perf-record, parsed by perf-report

40

41 -~ #
42 6.37% 7.70% db_bench db_bench [.] rocksdb::DBImpl::GetImpl
43 3.47% 4.19% db bench db_bench [.] rocksdb::Version::Get
Las 3.26% 3.94% db bench db bench [.] rocksdb::Stats::Finj
45 2.94% 3.56% db_bench db_bench [.] rocksdb::Benchmark::ReadRandom
46 2.88% 3.48% db_bench db_bench [.] rocksdb::GetContext::GetContext
47 2.13% 2.58% db_bench [vdso] [.] 0x00000600000006e8
48 1.93% 2.34% db_bench db_bench [.] std::mersenne_twister_engine<unsigned long, 64ul, 312ul, 156ul, 31ul,
13043109905998158313ul, 29ul, 6148914691236517205ul, 17ul, B8202884508482404352ul, 37ul, 18444473444759240704ul, 43ul, 6364136223846793005ul>:: _M_gen_rand
49 1.69% 2.04% db_bench db_bench [.] rocksdb::ThreadLocalPtr::StaticMeta::CompareAndSwap
56 1.47% 1.77% db_bench db_bench [.] rocksdb::DBImpl::Get
51 1.40% 1.35% node [kernel.kallsyms] [k] link_path_walk.part.®.constprop.®
52 1.34% 1.62% db_bench db_bench [.] rocksdb::ThreadLocalPtr::StaticMeta: :Swap
53 1.34% 1.29% node [kernel.kallsyms] [k] __d_lookup_rcu
54 0.96% ©0.32% node [unknown] [.] oxepeeee0808f5bd5f
55 0.95% 1.15% db_bench db_bench [.] rocksdb::MemTable::Get
56 0.84% 1.01% db_bench db_bench [.] rocksdb::MemTableListVersion::GetFromList

cmdline : /usr/lib/linux-tools-5.15.0-100/perf record -e {cycles,instructions}:S
-a —-F 97 /usr/bin/taskset -c 140 ./benchmark.sh readrandom

51

ik) optimatist AMDZI1

I Case study: Bottleneck analysis in multithreaded scenarios

39 # Overhead Command Shared Object
Symbol

160 threads, data collected by perf-record, parsed by perf-report

40

41

|42 [87.10% 86.67% -db_bench db_bench [.] rocksdb::Stats::Finishedops]

L3 7.06% 2.80% db_bench db_bench T.] rocksdb::Version::Get

bl 1.71% 1.58% db_bench db_bench (Lol ::ThreadLocalPtr::StaticMeta: :Swap

45 1.60% 1.64% db_bench db_bench [fad] DBImpl::GetImpl

46 0.97% 0.99% db_bench db_bench L] Benchmark: :ReadRandom

47 0.52% 0.53% db_bench db_bench [.] rocksdb::GetContext::GetContext

48 0.41% 0.41% db_bench db_bench [.] rocksdb::DBImpl::Get

49 8.34% 0.34% db_bench db_bench [.] rocksdb::ThreadLocalPtr::StaticMeta: :CompareAndSwap

50 @.30% 0.31% db_bench db_bench [.] rocksdb::HistogramBucketMapper::IndexForvalue

51 0.25% ©.25% db_bench [vdso] [.] 6x00000000000006e8

52 0.23% 0.24% db_bench db_bench [.] std::mersenne_twister_engine<unsigned long, 64ul, 312ul, 156ul, 31ul,
13043109905998158313ul, 29ul, 6148914691236517205ul, 17ul, 8202884508482404352ul, 37ul, 18444473444759240704ul, 43ul, 6364136223846793005ul>::_M_gen_rand

53 0.21% 0.21% db_bench db_bench [.] std::mersenne_twister_engine<unsigned long, 64ul, 312ul, 156ul, 31lul
13043109905998158313ul, 29ul, 6148914691236517205ul, 17ul, 8202884508482404352ul, 37ul, 18444473444759240704ul, 43ul, 6364136223846793005ul>::operator()
8.19% 0.19% db_bench db_bench [.] rocksdb::MemTableListVersion::GetFromList
8.19% 0.19% db_bench db_bench [.] rocksdb::MemTable: :Get
©.18% ©0.18% db_bench db_bench [.] rocksdb::LookupKey: : LookupKey
0.17% ©0.17% db_bench db_bench [.] rocksdb::DBImpl::FailIfCfHasTs

cmdline : /usr/lib/linux-tools-5.15.0-100/perf record -e {cycles,instructions}:S
-a -F 97 ./benchmark.sh readrandom

52

ZHEJIANG UNIVERSITY

e Y () Optimatist AMDZ1

I Case study: Bottleneck analysis in multithreaded scenarios

Percentage of rocksdb::Stats::FinishedOps in perf record samples (Original)

60
g
g 40
We configured CPU affinity to distribute all the threads
to different physical cores of the same processor, and
. increased the number of threads from 1 to 40.
0 5 10 15 20 25 30 35 40
Threads
5 @ /”/’J'g) Optimatist AMDZ1

I Case study: Bottleneck analysis in multithreaded scenarios

Comparison of RocksDB Random Read Throughput: 1 to 40 Threads {Original) Comparison of RocksDB Random Read Latency: 1 to 40 Threads (Original]

20

15

Y o,
& gum
&

10 i

00 000 IIIIIIII

13345607 DNDEUEGTANDAZUUBATARNNRAAUUEE T =D 0 1334507 i DNEERESENUEDAZANBATAD DAL UNES X T A D L

Different physical cores on the same processor

ssssssssssssssssss

27

I Case study: Bottleneck analysis in multithreaded scenarios

55

void FinishedOps(DBWithColumnFamilies* db_with_cfh, DBx db, int64_t num_ops,

enum OperationType 0| kOthers) {
if (reporter_agent_) {

reporter_agent_->ReportFinished0Ops(num_ops);

class Stats {
private:
SystemClock* clock_;
int id_;
uint64_t start_ = 8;
uint64_t sine_interval_;
uint64_t finish_;
double seconds_;
uintés4_t done_;
uinté4_t last_report_done_;
uinté4_t next_report_;
uinté4_t bytes_;
uint6s_t last_op_finish_;
uint64_t last_report_finish_;

std::unordered_map<OperationType, std::shared_ptr<HistogramImpl>,

std: :hash<unsigned char>>
hist_;
std::string message_;
bool exclude_from_merge_;

| ReporterAgent* reporter_agent_; // does not own |
T1end class COMDINedstats;

Global Variable with Mutex Lock

The function FinishedOps is called
once after each operation is completed.

void ReadRand
while (!durat

(Threadstatex thread) {
0.Done(1)) {

thread->stats.Finishedops(db_with_cfh, db_with_cfh->db, 1, kRead);

char msg[1ee];
snprintf(msg, sizeof(msg), "(%" PRIuB4 " of %" PRIuU64 " found)\n", found,
read);

thread-»>stats.AddBytes(bytes);
thread->stats.AddMessage(msg);

Case study: Bottleneck analysis in multithreaded scenarios

Before modification

Threads Instructions Transactions Path Len Cycles CPl MicroSec Ops Ops Sec Total Time(s) CPU Util(%)
1 3129398329928 1510002999 2072.445109 1136230674488 0.363083 0.199 5033342.0 300.000 99.710000
160 22625805888251 11125908840 2033.614172 171717420118090 7.589450 4.314 |37083372.0 300.024 99.462063

After modification

323,795,384 vs 37,083,372

Threads Instructions Transactions Path Len Cycles CPl MicroSec Ops Ops Sec Total Time(s) CPU Util(%)
1 3259113189316 1588156999 2052.135394 1124524900793 0.345040 0.189 5293853.0 300.000 99.71000
160 194183272380812 97151942840 1998.758509 151013619154778 0.777686 0.494 |323795384.0 300.041 99.55725

i, ¥ () Optimatist AMDZ1

ZHEJIANG UNIVERSITY

28

I Case study: Bottleneck analysis in multithreaded scenarios

Comparisen of RocksDB Random Read Throughput: 1 to 40 Threads (Original) 168 Comparisan of RocksDB Random Read Throughput: 1 to 40 Threads (Removed Bottienack)
.
g
10
I . .lIlIIII
233458700 B0R AR NN DDA DD ND AT AADAE D% A2 N e T TR

Before modification After modification

Throughput

.

() Optimatist AMDZ1

I Case study: Bottleneck analysis in multithreaded scenarios

Comparison of RacksDA Random Read Latency: 1 to 40 Threads (Original) Comparison of RocksDB Random Read Latency: 1 to 40 Threads {Removed Bottleneck)
200
0200
175
0175
150
a.150
125
2 go1s
S, <
f §
H Iam
s
0075
s
a.050
B IIIIIIIII -
uMI 0.000
1134357 I NN RERE SN R ANR AR TAANANBUSETARS 1234367 I NUN NSRRI DR AN BT RARARIASRA DD

Before modification After modification

Latency

58

I Analysis shared on GitHub and Google Group

https://github.com/facebook/rocksdb/issues/12594

https://groups.google.com/g/rocksdb/c/ORtpFcXMf8w

Problem agreed last month. Will submit a PR to fix it.

,’Iﬁj’)’.? () Optimatist AMDZ1

Holidays in 2019

e Bloaast USSho gie. Performance Matters!

One Company Total US Online

One Day vs Retail Sales

Four Days
$38.4
Alibaba’s 1011 Gross
$24.6
Yora'LUS: oring
wancay | [
Small Business -

saturday & [EER

$7.4

Thanksgiving
Day &

zzzzzzzzzzzzzzzzzz

30

https://github.com/facebook/rocksdb/issues/12594
https://groups.google.com/g/rocksdb/c/ORtpFcXMf8w
https://www.alizila.com/alibabas-11-11-outstrips-biggest-us-shopping-holidays-in-2019/

I To save 1000 servers

Servers Needed
Performance

Improvement (%)

100,000 1 Software Configuration at Scale
'Hardware Configuration at Scale

System Performance @ SPE D

o

Estimation valuation Decision
Measurements & « Software & Hardware + Actions
Samplg Changes

SOFTWARE
UPGRAD!

2

\\\\\\\\\\\\\\\\\\

31

But the datacenters are poorly utilized!

1 TWi"er [Delimitrou'14] G.oog Ie [Barroso'09]

20% avg. utilization 30% avg. ulilization

Fraction of Time
e
s

0 T Tl
80 100 0 01 02 0) 04 03 06 07 08 09 1

CF'GDUIiIizaIiosr? (%)
O Low utilization in large-scale clouds, even with automated
management systems

David Lo Oral Defense Apsil 7, 2015 8

m;n},? () Optimatist AMDZ1

I Performance Analysis at Scale

» Google-wide Profiling (GWP)

« CPI?

» Performance Scaling in many cores

» Resource Usage Effectiveness (RUE)

» System Performance Estimation, Evaluation
and Decision (SPEED)

\\\\\\\\\\\\\\\\\\

A
Data center !

GWP

collector
= —

Gang Ren, Google-wide Profiling @ IEEE Micro 2010

GWP Optimization

CPI;;, the measured CPI of application The equation is:

j on platform 7.

Toralload;, the rotal measured number Minimize Z CPlj * Load;;

of instruction samples of application j. o

Capacity;, the total capacity for plat- wherez Load; = TotalLoad,

form 7, measured as total number of j

cycle samples for platform :. andz CPI; * Loa ﬂ’;} < Chpariny
il

Gang Ren, Google-wide Profiling @ IEEE Micro 2010

\\\\\\\\\\\\\\\\\\

33

CPI?

In one study, CPI correlates » 7 e
well with throughput £ 160 A
If that is true for your data, 214X
then the next slide may [= B E—

help you

_[EFE

CPI Distribution
Ignore small samples (e.g., less tha
Select outlier detection based on a «

Normalized throughput

20 40 60 80 100 120

1.4X
Normalized IPS

Figure 2: Normalized application transactions per second
(TPS) and instructions per second (IPS) for a representa-
tive batch job: (a) normalized rates against running time;
(b) scatter plot of the two rates, which have a correlation
coefficient of 0.97. Each dara point is the mean across a
Sfew thousand machines over a 10 minute window. The data
is normalized to the minimum value observed in the 2-hour
collection period.

Xiao Zhang, et al. CPI2 @ EuroSys 2013

Tl cpsssnins o o St el e e e s s
. —
6%[

5 19
2 R®
: :
—-“____-_

<—— Fitted GEV function

@
o
T

<—— U+20

Sample Percentage

"
B
T

<—— u+3c

1°/ﬂ

0% e ‘

2 25 3

CPI

Figure 7: CPI distribution for a web-search job in a cluster
running on thousands of machines of the same type over a 2-
day period. The graph includes more than 450k CPI samples
and has mean p = 1.8 and standard deviation o = 0.16.

We also show the best-fit genervalized extreme value curve
GEV(1.73,0.133,-0.0534).

34

0S Report CPU Utilizaitons

I CPI from SPECjbb2005 experiments

Experiment Results (usresys)
SPECjbb2005 Throughput BZPMU Counter: &
. L1 (Mops) o INST_RETIRED.ANY /s
Number of logical = . 73:c110
CPU's 64 2 o
Frequency /GHz 2.5(Fixed)
ThroughputCPU
/Mops Util. /% Cycles /s Insts /s CPI
32 cores (1 thread
each) 1.199 50.1680,256,000,000 75,800,000,000 1.06
32 cores (both
threads per core) 1.235 98.59157,744,000,00078,400,000,000 2.01

I Performance Estimation at Scale
O‘

Resource Usage
RUE = Smaller is better

® Work Done
Workload ‘

Resource usage: CPU, Memory, Storage, Network
Work Done: Queries, Tasks

zzzzzzzzzzzzzzzzzz

35

I Performance Evaluation at Scale

RUE,
Speedup = RUE Bigger is better
2

RUE, is the RUE of configuration 1
RUE, is the RUE of configuration 2

@ }Iﬁ;’); ¥ () Optimatist AMDZ1

I Performance Data Collection in the Large

36

I The law of large numbers

a theorem that describes the result of performing the
same experiment a large number of times. According
to the law, the average of the results obtained from a
large number of trials should be close to the expected
value, and will tend to become closer as more trials
are performed.

https://en.wikipedia.org/wiki/Law_of_large_numbers

I Example: Testing a new feature

To reduce the cost of testing
1% of instances of an application ran on the new
config (config 2), 99% of instances ran on the old
config (config 1)
No change in deployments, each app might run on
the new config or the old config
We still have a large number of samples, even with
1% of the instances

zzzzzzzzzzzzzzzzzz

37

I Performance at Scale

RUE,

‘ ‘

RUE, RUE,

vvvvvvvvvvvvvvvvvv

I Big Data

Config 1 Config 2
Speedup
Proportion of App Proportion of App
Instances RUE, Instances RUE,
App Total 99.00% 885 1.00% 815 1.09

Looks really promising, let’s change ??
More samples needed?
More analysis needed?

’iﬂ.(:i?:'s ‘? () Optimatist AMD{1

I Big Data Paradox

Config 1
Proportion of App
Instances
App Total 99.00%
App Group 1 50.10%
App Group 2 31.50%
App Group 3 17.40%

RUE,
885
1289
428
550

Config 2

Proportion of App
Instances

1.00%
0.30%
0.40%
0.30%

Speedup
RUE,
815 1.09
1484 0.87
434 0.99
655 0.84

I Simpson’s Paradox

A trend appears in several different groups of data but
disappears or reverses when these groups are

combined

https://plato.stanford.edu/entries/paradox-simpson/

\\\\\\\\\\\\\\\\\\

39

https://plato.stanford.edu/entries/paradox-simpson/

I Simpson’s Paradox

Resource
Utilization

Feature on

Feature off

Overall performance increases

Is that real?

Work Done

I References

80

* G.Ren, E. Tune, T. Moseley, Y. Shi, S. Rus and R. Hundt, "Google-Wide Profiling: A Continuous

Profiling Infrastructure for Data Centers," in IEEE Micro, vol. 30, no. 4, pp. 65-79, July-Aug. 2010,

doi: 10.1109/MM.2010.68.

Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John Wilkes. 2013.

CPI2: CPU performance isolation for shared compute clusters. In Proceedings of the 8th ACM

European Conference on Computer Systems (EuroSys '13). Association for Computing Machinery,

New York, NY, USA, 379-391. https://doi.org/10.1145/2465351.2465388

Intel gProfiler

« https://www.intel.com/content/www/us/en/newsroom/news/intel-releases-continuous-profiler-for-cpu-
performance.html#gs.785y33

Facebook RocksDB

« https://github.com/facebook/rocksdb

Simpson’s Paradox

« https://github.com/ninoch/Trend-Simpsons-Paradox
https://github.com/CamDavidsonPilon/simpsons-paradox
https://github.com/ijmbarr/simpsons-paradox

« https://github.com/ehart-altair/SimpsonsParadox

ssssssssssssssssss

40

https://www.intel.com/content/www/us/en/newsroom/news/intel-releases-continuous-profiler-for-cpu-performance.html#gs.785y33
https://www.intel.com/content/www/us/en/newsroom/news/intel-releases-continuous-profiler-for-cpu-performance.html#gs.785y33
https://github.com/facebook/rocksdb

RAID CONTROULERS DONT
MAKE SENSE AT OUR SCALE,
EVERYTHING 15 REDUNDANT
AT HIGHER LEVELS, WHEN A
DRIVE. FAILS, LE JUST THROW
AlJAY THE WHOLE. MACHINE.

© THANK YOU ©

MACHINE? WE THROW
AWAY LHOLE. RACKS
AT A TIME.

YEAH, UHO
ﬁEPLH{Es

it

WE JUST REPLACE
WHOLE RooMS AT
ONCE. AT OUR S(ALE,
MESSING LIITH RACKS
ISHTECDAD"IPOBL

LIEGIDGLE'

ik

WE DONT HAVE SPRINKLERS
OR INERTGRS SYSTEMS.
WHEN A DATACENTER CATCHES
FIRE, LE JUST ROPE IT OFF
AND REBUILD ONE TOUN OVER.
HﬁKESSENSE

J:UMDERFWERJPE
15 REALLY NECESSARY.

? W?

https://xked.com/1737/

41

	Slide 1
	Slide 2: Who are we?
	Slide 3: Agenda
	Slide 4: Part 1: Performance perspective with focus on production deployments
	Slide 5: Part-1
	Slide 6: Life used to be simple…
	Slide 7: Life used to be simple… Now…
	Slide 8: Performance monitoring universe…
	Slide 9: Performance monitoring universe … this tutorial focus…
	Slide 10: What typical production deployments requesting…
	Slide 11: What typical production deployments requesting…
	Slide 12: What typical production deployments requesting…
	Slide 13: Before executing the application … ensure…
	Slide 14: STEP 1 of any performance analysis … understand…
	Slide 15: How to profile an application…
	Slide 16: How to profile an application … vmstat
	Slide 17: STEP 2 … understand the platform and its features
	Slide 18: Understand the platform and its features: NUMA
	Slide 19: Understand the platform and its features: SMT / HT
	Slide 20: CPU utilization % examples … next level detail…
	Slide 21: CPU utilization % not linear when SMT is enabled…
	Slide 22: Performance analysis with SMT / HT…
	Slide 23: STEP 3 Understand the scaling of the deployed application…
	Slide 24: Understand the scaling bottlenecks…
	Slide 25: Understand the scaling of the deployed application…
	Slide 26: STEP 3 Understand the scaling of the deployed application…
	Slide 27: STEP 3 Understand the scaling of the deployed application…
	Slide 28: STEP 3 Understand the scaling of the deployed application…
	Slide 29: STEP 4 How to validate these observations…
	Slide 30: Typical production deployments … asks…
	Slide 31: Large scale deployments … proposed architecture…
	Slide 32: Continuous data collection…
	Slide 33: Analysis … vmstat or similar…
	Slide 34: Effective Frequency…
	Slide 35: On-demand data collection … system level tools…
	Slide 36: PerfSpect…
	Slide 37: ProcessWatch…
	Slide 38: Analysis…
	Slide 39: Analysis … using architecture specific counters…
	Slide 40: Performance methodology … rule + heuristic…
	Slide 41: PerfSpect logging data…
	Slide 42: Challenges…
	Slide 43: Part 2: Performance analysis in the industry, methodology and case studies
	Slide 44: Workload in the many core era
	Slide 45: Case study: Bottleneck analysis with many cores
	Slide 46: Case study: Bottleneck analysis with many cores
	Slide 47: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 48: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 49: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 50: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 51: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 52: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 53: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 54: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 55: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 56: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 57: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 58: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 59: Analysis shared on GitHub and Google Group
	Slide 60: Performance Matters!
	Slide 61: To save 1000 servers
	Slide 62: SPEED
	Slide 63
	Slide 64: Performance Analysis at Scale
	Slide 65: GWP
	Slide 66: GWP Optimization
	Slide 67: CPI2
	Slide 68: CPI2
	Slide 69: CPI from SPECjbb2005 experiments
	Slide 70: Performance Estimation at Scale
	Slide 71: Performance Evaluation at Scale
	Slide 72: Performance Data Collection in the Large
	Slide 73: The law of large numbers
	Slide 74: Example: Testing a new feature
	Slide 75: Performance Evaluation at Scale
	Slide 76: Big Data
	Slide 77: Big Data Paradox
	Slide 78: Simpson’s Paradox
	Slide 79: Simpson’s Paradox
	Slide 80: References
	Slide 81:  THANK YOU 

