
1

Optimatist

Kingsum Chow, Xinyu Jiang, Chengdong Li, Anil Rajput

Software Performance Analysis –

Industry Perspectives

Optimatist

Kingsum Chow, Professor / School of Software Technology, Zhejiang University

Xinyu Jiang, Postgraduate Student / School of Software Technology, Zhejiang University

Chengdong Li, Founder & CEO / Optimatist

Anil Rajput, AMD Fellow / Datacenter Ecosystems and Application Engineering, also Chair, Java

Committee, SPEC

Who are we?

*All third-party product, company names and logos are trademarks or registered® trademarks and remain the property of their respective holders.

Use of them does not imply any affiliation with or endorsement by them.

2

2

Optimatist

• Part 1: Performance perspective with focus on production deployments

• Part 2: Performance analysis in the industry, methodology and case studies

Agenda

3

Part 1: Performance
perspective with focus on
production deployments

3

Optimatist

• Life in 2010 vs. Now

• Performance Monitoring Universe

• Production Deployments Asks

• Detour: essential STEPs of Performance Analysis
• Profiling

• Architecture features intertwined with Analysis

• Large Scale Deployments
• App Telemetry

• Tools, data collection, methodology and Analysis

• Challenges

Part-1

5

Optimatist

Life used to be simple…

….and performance analysis ☺

• Single or Dual Cores

• Fixed Frequency

• Uniform Memory

• Simple I/O

• Baremetal OS

Caches

Memory

Controller

Memory

Devices

PCIe etc.

NIC, Disks

Cores

6

4

Optimatist

Life used to be simple… Now…

• vCPUs > 512

• Frequency/Boost

• Per core power control

• NUMA

• Multi-nodes to Microservices

• Cloud VMs, Hypervisors, Containers

• System and Application telemetry

• Open-source and proprietary tools

• AI based scheduling and problem analysis

• Dual Cores

• Fixed Frequency

• Uniform Memory

• Simple I/O

• Baremetal OS

Caches

Memory

Controller

Memory

Devices

PCIe etc.

NIC, Disks

Cores

….and performance analysis ☺

Caches

Memory Devices

PCIe, etc.
NIC, Disks

Cores

Caches

Cores

Caches

Cores

Caches

Cores

Caches

Cores

Caches

Cores

Memory Memory Memory

7

Optimatist

Performance monitoring universe…

• Application Telemetry

• VM logs

• OS monitoring/tracing

• System level

• Process Specific/Functional level

• Custom tools

• PMCs/PMUs validation/testing

• New PMCs/PMUs research

OS

VMs

Apps

Frameworks

8

5

Optimatist

Performance monitoring universe … this tutorial focus…

• Application Telemetry

• VM logs

• OS monitoring/tracing

• System level

• Process Specific/Functional level

• Custom tools

• PMCs/PMUs validation/testing

• New PMCs/PMUs research

OS

VMs

Apps

Frameworks

+
Latest

production

deployment

focus

9

Optimatist

What typical production deployments requesting…

• Few important counters … all the time at right granularity

• On demand or based on some alerts … detailed counters capture

➔All above … using open-source tools (Linux Perf)

➔Automation to correlate … above with application telemetry!

➔Should lead to … better configurations, optimizations and TCO

10

6

Optimatist

What typical production deployments requesting…

• Few important counters … all the time at right granularity

• On demand or based on some alerts … detailed counters capture

➔All above … using open-source tools (Linux Perf)

➔Automation to correlate … above with application telemetry!

➔Should lead to… better configurations, optimizations and TCO

➔In 1-2 years… generate enough training data set for LLMs ☺

Short term: Apply RAG, create Agents

Long Term: AIPerfEngineer!

11

Optimatist

What typical production deployments requesting…

• Yes, we have a proposed methodology which is not perfect,

but pretty good!

• It starts with basic fundamentals…

12

7

Optimatist

Before executing the application … ensure…

• Platform Configuration

• Log the config details using many tools

• Develop automatic compare and alerts
• CPU models, Memory DIMMs, Disks, etc.

• System Health check

• Collect quick basic performance evaluation
• Memory bandwidth and latency

• I/O perf, etc.

13

Optimatist

STEP 1 of any performance analysis … understand…

CPU

Memory (used)

I/O

Execution phases

• The high-level characteristics of the application

14

8

Optimatist

How to profile an application…

Container

VM

VM

Host

• Many tools available

• Basic vmstat
• Collect and view in histogram

• Check if running at

• Host level or

• VM level

15

Optimatist

How to profile an application … vmstat

• vmstat https://access.redhat.com/solutions/1160343

• Waiting threads

• Memory use

• I/O

• Interrupts

• Context Switch

• CPU %: user, system, I/O wait, and idle

16

https://access.redhat.com/solutions/1160343

9

Optimatist

STEP 2 … understand the platform and its features

CPU CPU
CPUCPU CPU

CPU
CPU

CPU

1P 2P Blade

Servers

Disk NIC Disk NIC

Disk NIC

• 1P, 2P or more…

17

Optimatist

Understand the platform and its features: NUMA

CPU CPUCPU

Disk NIC Disk NIC

→Impacts memory bandwidth and latency

• NUMA & Memory interleaving

18

10

Optimatist

Understand the platform and its features: SMT / HT

→Significantly impacts CPU utilization % and Performance analysis!

• AMD® EPYC Simultaneous Multithreading (SMT)

• Intel® Hyper-Threading Technology (HT)

• IBM® Power9 Simultaneous Multithreading (SMT)

• More replication of resources

19

Optimatist

CPU utilization % examples … next level detail…

→Just knowing

CPU % utilization

may not be

sufficient!

System Total

CPU %

User

vs. Sys

A 40% 35% User

5% Sys

B 40% 25% User

15% Sys

Syste

m

Total

CPU %

User

vs. Sys

Effective

Frequency

A 40% 35% User

5% Sys

3.50 GHz

B 40% 35% User

5% Sys

2.8 GHz

System Total

CPU %

User

vs. Sys

Effective

Frequency

Scheduling

A 40% 35% User

5% Sys

3.50 GHz

B 40% 35% User

5% Sys

3.50 GHz
Across cores

Cores + SMT threads

20

11

Optimatist

CPU utilization % not linear when SMT is enabled…

→In production, it is critical for auto load balancer policies!

0% 50% 100%

16 vCPUs SMT Enabled

16 vCPUs (with SMT Disabled)

Headroom

Headroom

Auto load balancer

policy @50% CPU

T
h

ro
u

g
h

p
u

t

Cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

21

Optimatist

Performance analysis with SMT / HT…

→Special attention when mixing IPC from SMT ON and OFF configs!

SMT OFF SMT ON

Total Instruction retired / sec 96 x 109 110 x 109

Total CLKs / sec
48 x 109

96 x 109
SMT OFF 16C/16T vCPUs x 3.0 GHz

SMT ON 16C/32T vCPUs x 3.0 GHz

Total Ops / sec 1000 1200 20% SMT Uplift

IPC (Instructions / CLK) 2.00 1.15

CPI (CLKs / Instruction) 0.50 0.87

• Fundamentals of Performance Analysis
Example:

22

12

Optimatist

STEP 3 Understand the scaling of the deployed application…

→Hypervisor may schedule VMs using different policies!

Within single L3 Align to L3s Across L3 first

23

Optimatist

Understand the scaling bottlenecks…

CPU 0 CPU 1

L2 I+D

I/O

Bandwidth

DRAM

Bandwidth

DRAM

24

13

Optimatist

Understand the scaling of the deployed application…

→Common resource L3

as first point of bottleneck!

CPU 0 CPU 1

L2 I+D

I/O

Bandwidth

DRAM

25

Optimatist

STEP 3 Understand the scaling of the deployed application…

→Common resource

L3 as first point of

bottleneck!

CPU 0 CPU 1

L2 I+D

Bandwidth

DRAM

I/O

→Common resource

DRAM Bandwidth as

next point of bottleneck!

→Common resource

I/O Bandwidth

could be bottleneck too!

26

14

Optimatist

STEP 3 Understand the scaling of the deployed application…

CPU 0 CPU 1

L2 I+D

Bandwidth

DRAM

I/O

Cores

L3 bottleneck@

None

 ~4 cores

 ~2 cores

27

Optimatist

STEP 3 Understand the scaling of the deployed application…

CPU 0 CPU 1

L2 I+D

Bandwidth

DRAM

I/O

Cores

CPU 0 CPU 1

Bottleneck analysis

No memory bandwidth issue

Memory bandwidth after App

across two L3s and

CPU 1 delivers gain again

Likely cross socket traffic or I/O

L3 bottleneck@

None

~4 cores

~2 cores

28

15

Optimatist

STEP 4 How to validate these observations…

→Tools, data collection, post processing and analysis

29

Optimatist

Typical production deployments … asks…

• In-depth optimization

• Profiling tools with architecture specific analysis

• Optimal sizing of VMs

• High level characterization of the application + TCO analysis

• Large scale production deployments telemetry and analysis…

30

16

Optimatist

Large scale deployments … proposed architecture…

→Collaboration areas between research and industry…

VM
VM

VM
VM

VM
VM

VM
VM

VM

VM
VM

VM
VM

VM
VM

VM
VM

VM
VM

VM
VM

VM
VM

VM
VM

VM

App Level

Telemetry

Logging

System

Level

Tools

Continuous

On demand

Logging

Logging

Postprocessing:

• App Level

• System Level

Analysis:

• App Level

• System Level

Recommendation:

• App Level

• System Level

31

Optimatist

Continuous data collection…

• vmstat

• Effective Frequency

• Etc.

32

17

Optimatist

Analysis … vmstat or similar…

• Mostly rule based analysis

vmstat:

logs

VM config:
SMT ON/OFF, etc.

High level:

App char

Analysis:
Sys CPU %,

I/O wait CPU %,

User CPU % → Throughput

Context Switch Rate

Interrupts Rate

Memory Swap

I/O within expected limits,

Memory utilization for TCO

Total CPU% for TCO

Recommendations:
Alerts

Input to config & TCO

33

Optimatist

Effective Frequency…

• Due to core level power management and total power capping,

measuring effective frequency of the cores associated to the VM

is very important to determine performance!

34

18

Optimatist

On-demand data collection … system level tools…

• PerfSpect

• ProcessWatch

35

Optimatist

PerfSpect…

• pip3 install -r requirements.txt

• make

• cd build && ./perf-collect -t 60 (sets
duration of 60s)

• ./perf-collect --socket –t 60 (sets duration
of 60s and collects Socket level information)

• ./perf-collect --cpu -a $PWD/sample.sh
(option --cpu to collect per cpu data and
disables uncore events, -a for application to
run with perf-collect and ends after workload
completion)

• ./perf-collect -m 80 --cpu -t 60 (option -m
is the mux interval)

• ./perf-collect -p 5041 -t 100 (option -p to
collect data for a given PID process)

• ./perf-postprocess (generates reports in
readable csv format and HTML file to view the
graphical plots)

36

19

Optimatist

ProcessWatch…

• Showcase

37

Optimatist

Analysis…

• Mostly rule based analysis

38

20

Optimatist

Analysis … using architecture specific counters…

• Mostly rule based but following … performance methodology…

PerfSpect:

logs

VM config:
SMT ON/OFF, etc.

High level:

App char

Analysis:

Performance Methodology

Recommendations:
Alerts

Input to config & TCO

39

Optimatist

Performance methodology … rule + heuristic…

Performance = =

=

Performance =

Ops

CLKs
Instructions

CLKs
X

Ops

Instructions

Ops / sec

Instructions / sec
X

Instructions / sec

CLKs / sec

X
1

Instructions / sec

Ops / sec

Architecture

(branch, cache,

memory, etc.)

Software

(compilation,

libraries, etc.)

IPC
better

better

40

21

Optimatist

PerfSpect logging data…

• Ops per sec (App Telemetry)

• Instruction / sec

• CLKs / sec

• Calculate IPC (Instructions, CLKs)

• Compare Architecture Counters

• Next in-depth: Branches, caches, memory bandwidth and latency

• Calculate Instructions / Ops (Instructions, Ops / sec)

• Compare for SW stack changes

41

Optimatist

Challenges…

• Many cloud deployments only allow core level PMCs

• Only core level PMCs available within a VM or container

• Manually it is not possible to analyze data collected at scale

• Performance analysis is rule based + heuristic + changes with

deployment and load etc.

→Very important for overall TCO to develop analysis and

recommendation using (App telemetry + System tools data)

42

22

Part 2: Performance analysis
in the industry, methodology
and case studies

Optimatist

A workload that has been running fine for a few cores may not

do well with dozens or hundreds of cores.

Core Scaling Analysis:

• Run a workload from a few cores to dozens or even

hundreds of cores

• If performance doesn’t scale well, identify the bottlenecks.

Workload in the many core era

23

Optimatist45

Case study: Bottleneck analysis with many cores

A library that provides an embeddable,

persistent key-value store for fast storage.

RocksDB is developed and maintained by

Facebook Database Engineering Team. It is

built on earlier work on LevelDB.

RocksDB

LevelDB is a fast key-value storage library

written at Google that provides an ordered

mapping from string keys to string values.

Authors: Sanjay Ghemawat

(sanjay@google.com) and Jeff Dean

(jeff@google.com)

LevelDB

https://github.com/google/leveldb

https://github.com/facebook/rocksdb

Optimatist46

Case study: Bottleneck analysis with many cores

RocksDB

LevelDB

https://github.com/google/leveldb

https://github.com/facebook/rocksdb

db_bench is used to evaluate the

performance of LevelDB and is part of

the LevelDB project.

Facebook conducted secondary

development based on LevelDB's
db_bench to evaluate the

performance of RocksDB.

They also built benchmark.sh on

top of it to provide recommended

running methods.

mailto:sanjay@google.com
mailto:jeff@google.com
https://github.com/google/leveldb
https://github.com/facebook/rocksdb
https://github.com/google/leveldb
https://github.com/facebook/rocksdb

24

Optimatist

• Apache Spark

• Apache Flink

• Apache Kafka

• Apache Doris

• Apache Kvrocks

• Alluxio

• ByteDance ByteGraph

• Microsoft Bing search engine

• Netflix

• Uber

• Airbnb

• Tencent PaxosStore (for WeChat)

• Yahoo

• LinkedIn

• PingCAP, TiDB, TiKV

• Snowflake

47

Case study: Bottleneck analysis in multithreaded scenarios

https://github.com/facebook/rocksdb/blob/main/USERS.md

Some of RocksDB’s users:

Optimatist

benchmark.sh and db_bench

have been used as the benchmark

for performance testing in many

versions of RocksDB.

48

Case study: Bottleneck analysis in multithreaded scenarios

https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks

https://github.com/facebook/rocksdb/blob/main/USERS.md
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks

25

Optimatist

• RocksDB: version 9.2.0

• CPU: 2 * Intel(R) Xeon(R) Platinum 8383C CPU @ 2.70GHz

• HyperThreading ON

• 40 cores per socket

• 160 hardware threads

• Memory: 512 GB

• OS: Ubuntu 22.04 5.15.0-102-generic

49

Case study: Bottleneck analysis in multithreaded scenarios

the parameters of benchmark.sh

export DB_DIR=./db

export WAL_DIR=./wal

export NUM_KEYS=900000000

export CACHE_SIZE=6442450944

export DURATION=300

export NUM_THREADS=1 # only this changed in the

following different experiments

./tools/benchmark.sh randomread

Random Read: Measure performance to randomly read existing keys. Uniform Distribution. Mason rotation method.

Optimatist50

Case study: Bottleneck analysis in multithreaded scenarios

26

Optimatist51

Case study: Bottleneck analysis in multithreaded scenarios

cmdline : /usr/lib/linux-tools-5.15.0-100/perf record -e {cycles,instructions}:S

-a -F 97 /usr/bin/taskset -c 140 ./benchmark.sh readrandom

1 thread, data collected by perf-record, parsed by perf-report

Optimatist52

Case study: Bottleneck analysis in multithreaded scenarios

cmdline : /usr/lib/linux-tools-5.15.0-100/perf record -e {cycles,instructions}:S

-a -F 97 ./benchmark.sh readrandom

160 threads, data collected by perf-record, parsed by perf-report

27

Optimatist53

Case study: Bottleneck analysis in multithreaded scenarios

We configured CPU affinity to distribute all the threads

to different physical cores of the same processor, and

increased the number of threads from 1 to 40.

Optimatist

Case study: Bottleneck analysis in multithreaded scenarios

54

Throughput Latency

Different physical cores on the same processor

28

Optimatist55

Case study: Bottleneck analysis in multithreaded scenarios

Global Variable with Mutex Lock

The function FinishedOps is called

once after each operation is completed.

Optimatist

Before modification

56

Case study: Bottleneck analysis in multithreaded scenarios

After modification 323,795,384 vs 37,083,372

29

Optimatist

Case study: Bottleneck analysis in multithreaded scenarios

57

Before modification After modification

Throughput

Optimatist

Case study: Bottleneck analysis in multithreaded scenarios

58

Before modification After modification

Latency

30

Optimatist

https://github.com/facebook/rocksdb/issues/12594

https://groups.google.com/g/rocksdb/c/ORtpFcXMf8w

Problem agreed last month. Will submit a PR to fix it.

Analysis shared on GitHub and Google Group

Optimatist

Performance Matters!

https://www.alizila.com/alibabas-11-11-outstrips-biggest-us-shopping-holidays-in-2019/

https://github.com/facebook/rocksdb/issues/12594
https://groups.google.com/g/rocksdb/c/ORtpFcXMf8w
https://www.alizila.com/alibabas-11-11-outstrips-biggest-us-shopping-holidays-in-2019/

31

Optimatist

To save 1000 servers

Servers Needed

Performance

Improvement (%)

Examples

10,000 10 Workload Characterization

Iron Law

100,000 1 Software Configuration at Scale

Hardware Configuration at Scale

Optimatist

SPEED

Estimation
Measurements &

Sampling

Evaluation

• Software & Hardware
Changes

Decision

• Actions

System Performance

32

Optimatist

Optimatist

• Google-wide Profiling (GWP)

• CPI2

• Performance Scaling in many cores

• Resource Usage Effectiveness (RUE)

• System Performance Estimation, Evaluation

and Decision (SPEED)

Performance Analysis at Scale

33

Optimatist

GWP

Gang Ren, Google-wide Profiling @ IEEE Micro 2010

Optimatist

GWP Optimization

Gang Ren, Google-wide Profiling @ IEEE Micro 2010

34

Optimatist

CPI2

In one study, CPI correlates

well with throughput

If that is true for your data,

then the next slide may

help you

Xiao Zhang, et al. CPI2 @ EuroSys 2013

Optimatist

CPI Distribution

Ignore small samples (e.g., less than 25% utilization)

Select outlier detection based on a criteria that works for your data (e.g., 3 times in 5 minutes)

CPI2

Xiao Zhang, et al. CPI2 @ EuroSys 2013

35

Optimatist

CPI from SPECjbb2005 experiments

Number of logical

CPU's 64

Frequency /GHz 2.5(Fixed)

Throughput

/Mops

CPU

Util. /% Cycles /s Insts /s CPI

32 cores (1 thread

each) 1.199 50.1680,256,000,000 75,800,000,000 1.06

32 cores (both

threads per core) 1.235 98.59157,744,000,000 78,400,000,000 2.01

Optimatist

Performance Estimation at Scale

RUE (Resource Usage Effectiveness)

𝑹𝑼𝑬 =
𝑹𝒆𝒔𝒐𝒖𝒓𝒄𝒆 𝑼𝒔𝒂𝒈𝒆

𝑾𝒐𝒓𝒌 𝑫𝒐𝒏𝒆

Resource usage: CPU, Memory, Storage, Network

Work Done: Queries, Tasks

Smaller is better

Workload

Specific

System Tools

36

Optimatist

Performance Evaluation at Scale

Speedup from configuration 1 to 2

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 =
𝑹𝑼𝑬𝟏
𝑹𝑼𝑬𝟐

RUE1 is the RUE of configuration 1

RUE2 is the RUE of configuration 2

Bigger is better

Optimatist

Performance Data Collection in the Large

37

Optimatist

The law of large numbers

a theorem that describes the result of performing the

same experiment a large number of times. According

to the law, the average of the results obtained from a

large number of trials should be close to the expected

value, and will tend to become closer as more trials

are performed.

https://en.wikipedia.org/wiki/Law_of_large_numbers

Optimatist

Example: Testing a new feature

To reduce the cost of testing

1% of instances of an application ran on the new

config (config 2), 99% of instances ran on the old

config (config 1)

No change in deployments, each app might run on

the new config or the old config

We still have a large number of samples, even with

1% of the instances

38

Optimatist

Performance Evaluation at Scale

App 3 App 4

Machine 4

Machine 2

App 2 App 3

Machine 3

App 1 App 2

App 1 App 2 App 3 App 4

Machine 1

App 1 App 3

Machine 4

App 1 App 2 App 3 App 4

App 2

App 3

App 1 App 4

App 1

Machine 3

Machine 2

Machine 1

App 3App 2

App 3

RUE1

RUE2

RUE1

Optimatist

Big Data

Config 1 Config 2
Speedup

Proportion of App
Instances RUE1

Proportion of App
Instances RUE2

App Total 99.00% 885 1.00% 815 1.09

Looks really promising, let’s change ??

More samples needed?

More analysis needed?

39

Optimatist

Big Data Paradox

Config 1 Config 2
Speedup

Proportion of App
Instances RUE1

Proportion of App
Instances RUE2

App Total 99.00% 885 1.00% 815 1.09

App Group 1 50.10% 1289 0.30% 1484 0.87

App Group 2 31.50% 428 0.40% 434 0.99

App Group 3 17.40% 550 0.30% 655 0.84

Optimatist

A trend appears in several different groups of data but

disappears or reverses when these groups are

combined

Simpson’s Paradox

https://plato.stanford.edu/entries/paradox-simpson/

https://plato.stanford.edu/entries/paradox-simpson/

40

Optimatist

Simpson’s Paradox

Resource

Utilization

Work Done

Feature on

Feature off

Overall performance increases

Is that real?

Optimatist

• G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus and R. Hundt, "Google-Wide Profiling: A Continuous

Profiling Infrastructure for Data Centers," in IEEE Micro, vol. 30, no. 4, pp. 65-79, July-Aug. 2010,

doi: 10.1109/MM.2010.68.

• Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John Wilkes. 2013.

CPI2: CPU performance isolation for shared compute clusters. In Proceedings of the 8th ACM

European Conference on Computer Systems (EuroSys '13). Association for Computing Machinery,

New York, NY, USA, 379–391. https://doi.org/10.1145/2465351.2465388

• Intel gProfiler

• https://www.intel.com/content/www/us/en/newsroom/news/intel-releases-continuous-profiler-for-cpu-

performance.html#gs.785y33

• Facebook RocksDB

• https://github.com/facebook/rocksdb

• Simpson’s Paradox

• https://github.com/ninoch/Trend-Simpsons-Paradox

• https://github.com/CamDavidsonPilon/simpsons-paradox

• https://github.com/ijmbarr/simpsons-paradox

• https://github.com/ehart-altair/SimpsonsParadox

References

80

https://www.intel.com/content/www/us/en/newsroom/news/intel-releases-continuous-profiler-for-cpu-performance.html#gs.785y33
https://www.intel.com/content/www/us/en/newsroom/news/intel-releases-continuous-profiler-for-cpu-performance.html#gs.785y33
https://github.com/facebook/rocksdb

41

Optimatist

☺ THANK YOU ☺

https://xkcd.com/1737/

	Slide 1
	Slide 2: Who are we?
	Slide 3: Agenda
	Slide 4: Part 1: Performance perspective with focus on production deployments
	Slide 5: Part-1
	Slide 6: Life used to be simple…
	Slide 7: Life used to be simple… Now…
	Slide 8: Performance monitoring universe…
	Slide 9: Performance monitoring universe … this tutorial focus…
	Slide 10: What typical production deployments requesting…
	Slide 11: What typical production deployments requesting…
	Slide 12: What typical production deployments requesting…
	Slide 13: Before executing the application … ensure…
	Slide 14: STEP 1 of any performance analysis … understand…
	Slide 15: How to profile an application…
	Slide 16: How to profile an application … vmstat
	Slide 17: STEP 2 … understand the platform and its features
	Slide 18: Understand the platform and its features: NUMA
	Slide 19: Understand the platform and its features: SMT / HT
	Slide 20: CPU utilization % examples … next level detail…
	Slide 21: CPU utilization % not linear when SMT is enabled…
	Slide 22: Performance analysis with SMT / HT…
	Slide 23: STEP 3 Understand the scaling of the deployed application…
	Slide 24: Understand the scaling bottlenecks…
	Slide 25: Understand the scaling of the deployed application…
	Slide 26: STEP 3 Understand the scaling of the deployed application…
	Slide 27: STEP 3 Understand the scaling of the deployed application…
	Slide 28: STEP 3 Understand the scaling of the deployed application…
	Slide 29: STEP 4 How to validate these observations…
	Slide 30: Typical production deployments … asks…
	Slide 31: Large scale deployments … proposed architecture…
	Slide 32: Continuous data collection…
	Slide 33: Analysis … vmstat or similar…
	Slide 34: Effective Frequency…
	Slide 35: On-demand data collection … system level tools…
	Slide 36: PerfSpect…
	Slide 37: ProcessWatch…
	Slide 38: Analysis…
	Slide 39: Analysis … using architecture specific counters…
	Slide 40: Performance methodology … rule + heuristic…
	Slide 41: PerfSpect logging data…
	Slide 42: Challenges…
	Slide 43: Part 2: Performance analysis in the industry, methodology and case studies
	Slide 44: Workload in the many core era
	Slide 45: Case study: Bottleneck analysis with many cores
	Slide 46: Case study: Bottleneck analysis with many cores
	Slide 47: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 48: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 49: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 50: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 51: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 52: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 53: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 54: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 55: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 56: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 57: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 58: Case study: Bottleneck analysis in multithreaded scenarios
	Slide 59: Analysis shared on GitHub and Google Group
	Slide 60: Performance Matters!
	Slide 61: To save 1000 servers
	Slide 62: SPEED
	Slide 63
	Slide 64: Performance Analysis at Scale
	Slide 65: GWP
	Slide 66: GWP Optimization
	Slide 67: CPI2
	Slide 68: CPI2
	Slide 69: CPI from SPECjbb2005 experiments
	Slide 70: Performance Estimation at Scale
	Slide 71: Performance Evaluation at Scale
	Slide 72: Performance Data Collection in the Large
	Slide 73: The law of large numbers
	Slide 74: Example: Testing a new feature
	Slide 75: Performance Evaluation at Scale
	Slide 76: Big Data
	Slide 77: Big Data Paradox
	Slide 78: Simpson’s Paradox
	Slide 79: Simpson’s Paradox
	Slide 80: References
	Slide 81:  THANK YOU 

